
LIES MY CALCULATOR AND COMPUTER TOLD ME

A wide variety of pocket-size calculating devices are currently marketed. Some can run
programs prepared by the user; some have preprogrammed packages for frequently used
calculus procedures, including the display of graphs. All have certain limitations in com-
mon: a limited range of magnitude (usually less than for calculators) and a bound on
accuracy (typically eight to thirteen digits).

A calculator usually comes with an owner’s manual. Read it! The manual will tell you
about further limitations (for example, for angles when entering trigonometric functions)
and perhaps how to overcome them.

Program packages for microcomputers (even the most fundamental ones, which realize
arithmetical operations and elementary functions) often suffer from hidden flaws. You will
be made aware of some of them in the following examples, and you are encouraged to
experiment using the ideas presented here.

PRELIMINARY EXPERIMENTS  
WITH YOUR CALCULATOR OR COMPUTER

To have a first look at the limitations and quality of your calculator, make it compute 
Of course, the answer is not a terminating decimal so it can’t be represented exactly on
your calculator. If the last displayed digit is 6 rather than 7, then your calculator approxi-
mates by truncating instead of rounding, so be prepared for slightly greater loss of accu-
racy in longer calculations.

Now multiply the result by 3; that is, calculate . If the answer is 2, then sub-
tract 2 from the result, thereby calculating . Instead of obtaining 0 as the
answer, you might obtain a small negative number, which depends on the construction of
the circuits. (The calculator keeps, in this case, a few “spare” digits that are remembered
but not shown.) This is all right because, as previously mentioned, the finite number of dig-
its makes it impossible to represent exactly.

A similar situation occurs when you calculate . If you do not obtain 0, the
order of magnitude of the result will tell you how many digits the calculator uses internally.

Next, try to compute using the key. Many calculators will indicate an error
because they are built to attempt . One way to overcome this is to use the fact that

whenever is an integer.
Calculators are usually constructed to operate in the decimal number system. In con-

trast, some microcomputer packages of arithmetical programs operate in a number system
with base other than 10 (typically 2 or 16). Here the list of unwelcome tricks your device
can play on you is even larger, since not all terminating decimal numbers are represented
exactly. A recent implementation of the BASIC language shows (in double precision)
examples of incorrect conversion from one number system into another, for example,

whereas

Yet another implementation, apparently free of the preceding anomalies, will not calculate
standard functions in double precision. For example, the number , whose
representation with sixteen decimal digits should be , appears as

; this is off by more than . What is worse, the cosine func-
tion is programmed so badly that its “cos” . (Can you invent a situation when
this could ruin your calculations?) These or similar defects exist in other programming 
languages too.

THE PERILS OF SUBTRACTION

You might have observed that subtraction of two numbers that are close to each other is a
tricky operation. The difficulty is similar to this thought exercise: Imagine that you walk
blindfolded 100 steps forward and then turn around and walk 99 steps. Are you sure that
you end up exactly one step from where you started?

0 � 1 � 2�23
3 � 10�73.14159 29794 31152

3.14159 26535 89793
� � 4 � tan�11

19 � 0.1 ?� 1.90000 00000 00001

8 � 0.1 �
? 0.79999 99999 99999 9

k��1�k � cos k�
e5 ln��1�

yx��1�5

(s6)2
� 6

2 � 3

�2 � 3� � 3 � 2
�2 � 3� � 3

2
3

2 � 3.
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■ www.stewartcalculus.com
For a discussion of graphing calculators
and computers with graphing software,

Calculators and Computers.
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The name of this phenomenon is “loss of significant digits.” To illustrate, let’s calculate

The approximations from my calculator are

and

and so we get . Even with three spare digits exposed, the
difference comes out as . As you can see, the two ten-digit numbers agree in
nine digits that, after subtraction, become zeros before the first nonzero digit. To make
things worse, the formerly small errors in the square roots become more visible. In this
particular example we can use rationalization to write 

(work out the details!) and now the loss of significant digits doesn’t occur:

to seven digits

(It would take too much space to explain why all seven digits are reliable; the subject
numerical analysis deals with these and similar situations.) See Exercise 7 for another
instance of restoring lost digits.

Now you can see why in Exercises 1.3 (Exercise 22) your guess at the limit of
was bound to go wrong: becomes so close to that the values will

eventually agree in all digits that the calculator is capable of carrying. Similarly, if you
start with just about any continuous function and try to guess the value of

long enough using a calculator, you will end up with a zero, despite all the rules in Chapter 1!

WHERE CALCULUS IS MORE POWERFUL 

One of the secrets of success of calculus in overcoming the difficulties connected with sub-
traction is symbolic manipulation. For instance, is always , although the cal-
culated value may be different. Try it with and . Another powerful
tool is the use of inequalities; a good example is the Squeeze Theorem as demonstrated in
Section 1.4. Yet another method for avoiding computational difficulties is provided by the
Mean Value Theorem and its consequences, such as l’Hospital’s Rule (which helps solve

The limitations of calculators and computers are further illustrated by infinite series. A
common misconception is that a series can be summed by adding terms until there is
“practically nothing to add” and “the error is less than the first neglected term.” The latter
statement is true for certain alternating series (see the Alternating Series Estimation 
Theorem) but not in general; a modified version is true for another class of series (Exer-
cise 10). As an example to refute these misconceptions, let’s consider the series

which is a convergent -series ( ). Suppose we were to try to sum this series,
correct to eight decimal places, by adding terms until they are less than 5 in the ninth deci-
mal place. In other words, we would stop when

1

n1.001 � 0.00000 0005

p � 1.001 � 1p

�
�

n�1
 

1

n1.001

b � s2 � 10�5a � 107
b�a � b� � a

f 	�x� � lim
h l

 

0
 
f �x � h� � f �x�

h

f

xtan x�tan x � x��x 3

1

8721s3 � 10,681s2
� 0.00003310115

8721s3 � 10,681s2 �
1

8721s3 � 10,681s2

0.00003306
8721s3 � 10,681s2 � 0.00003

10,681s2 � 15105.215068721s3 � 15105.21509

8721s3 � 10,681s2
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the aforementioned exercise and others) and Taylor’s Formula.

THAN CALCULATORS AND COMPUTERS
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that is, when . (This would require a high-speed computer and
increased precision.) After going to all this trouble, we would end up with the approxi-
mating partial sum

But, from the proof of the Integral Test, we have

Thus, the machine result represents less than 2% of the correct answer!
Suppose that we then wanted to add a huge number of terms of this series, say,

terms, in order to approximate the infinite sum more closely. (This number , called a
googol, is outside the range of pocket calculators and is much larger than the number of
elementary particles in our solar system.) If we were to add terms of the above series
(only in theory; a million years is less than microseconds), we would still obtain a sum
of less than 207 compared with the true sum of more than 1000. (This estimate of 207 is
obtained by using  a more precise form of the Integral Test, known as the Euler-Maclaurin
Formula, and only then using a calculator. The formula provides a way to accelerate the
convergence of this and other series.)

If the two preceding approaches didn’t give the right information about the accuracy of
the partial sums, what does? A suitable inequality satisfied by the remainder of the series,
as you can see from Exercise 6.

Computers and calculators are not replacements for mathematical thought. They are
just replacements for some kinds of mathematical labor, either numerical or symbolic.
There are, and always will be, mathematical problems that can’t be solved by a calculator
or computer, regardless of its size and speed. A calculator or computer does stretch the
human capacity for handling numbers and symbols, but there is still considerable scope
and necessity for “thinking before doing.”

1026
10100

10100
10100

�
�

n�1
 

1

n1.001 � y
�

1
 

dx

x1.001 � 1000

SN � �
N

n�1
 

1

n1.001 � 19.5

n � N � 196,217,284
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3. Even innocent-looking calculus problems can lead to numbers
beyond the calculator range. Show that the maximum value of
the function

is greater than . [Hint: Use logarithms.] What is the limit
of as ?

4. What is a numerically reliable expression to replace
, especially when is a small number? You will

need to use trigonometric identities. (Recall that some com-
puter packages would signal an unnecessary error condition,
or even switch to complex arithmetic, when .)

5. Try to evaluate

on your calculator. These numbers are so close together that
you will likely obtain 0 or just a few digits of accuracy. How-
ever, we can use the Mean Value Theorem to achieve much
greater accuracy.

D � ln ln�109 � 1� � ln ln�109�

x � 0

xs1 � cos x

x l �f �x�
10124

f �x� �
x2

�1.0001�x

1. Guess the value of

and determine when to stop guessing before the loss of signifi-
cant digits destroys your result. (The answer will depend on
your calculator.) Then find the precise answer using an appro-
priate calculus method.

2. Guess the value of

and determine when to stop guessing before the loss of signifi-
cant digits destroys your result. This time the detrimental sub-
traction takes place inside the machine; explain how (assuming
that the Taylor series with center is used to approximate

). Then find the precise answer using an appropriate calcu-
lus method.
ln x

a � 1

lim
h l 0

 
ln�1 � h�

h

lim
x l 0
� 1

sin2x
�

1

x2�

EXERCISES

Click here for answers.A Click here for solutions.S



4 ■ L I ES  MY  CALCULATOR  AND  COMPUTER  TOLD  ME

(a) Show that all these troubles are avoided by the formula

where

Hint: Use the factorization formula

(b) Evaluate

If the result is simple, relate it to part (a), that is, restore the
cubic equation whose root is written in this form.

10. (a) Consider the power series

It is easy to show that its radius of convergence is .
The series will converge rather slowly at : find out
how many terms will make the error less than .

(b) We can speed up the convergence of the series in 
part (a). Show that

and find the number of the terms of this transformed series
that leads to an error less than .
[Hint: Compare with the series , whose sum
you know.]

11. The positive numbers

can, in theory, be calculated from a reduction formula obtained
by integration by parts: , . Prove,
using and the Squeeze Theorem, that

. Then try to calculate from the reduction for-
mula using your calculator. What went wrong?

The initial term can’t be represented exactly in a
calculator. Let’s call the approximation of that we can
enter. Verify from the reduction formula (by observing the pat-
tern after a few steps) that

and recall from our study of Taylor and Maclaurin series that

converges to as . The expression in square brackets nl�e � 1

1

1!
�

1

2!
� 
 
 
 �

1

n

an � �c � � 1

1!
�

1

2!
� 
 
 
 �

1

n!�	n!

e � 1c
a0 � e � 1

a20limn l � an � 0
1 � e1�x � e

an � nan�1 � 1a0 � e � 1

an � y
1

0
 e1�xx n dx


�
n�1 �x n�100 n�

5 � 10�7

f �x� �
x

100 � x
� f� x

100�

5 � 10�7
x � 99

r � 100

f �x� � �
�

n�1
 

x n

100 n � 1

u

u �
4

(2 � s5)2�3 � 1 � (2 � s5)�2�3

A � B �
A3 � B3

A2 � AB � B2

a �
27� q � � s729q2 � 108p3

2

x �
�9q

a2�3 � 3p � 9p2a�2�3

(a) Let , , and . Then the
Mean Value Theorem gives

where . Since is decreasing, we have
. Use this to estimate the value of .

(b) Use the Mean Value Theorem a second time to discover
why the quantities and in part (a) are so close to
each other.

6. For the series , studied in the text, exactly how many
terms do we need (in theory) to make the error less than 5 in

proof of the Integral Test:

7. Archimedes found an approximation to by considering the
perimeter of a regular 96-gon inscribed in a circle of radius 1.
His formula, in modern notation, is

(a) Carry out the calculations and compare with the value of 
from more accurate sources, say . How
many digits did you lose?

(b) Perform rationalization to avoid subtraction of approximate
numbers and count the exact digits again.

8. This exercise is related to Exercise 2. Suppose that your com-
puting device has an excellent program for the exponential
function but a poor program for . Use the 
identity

9. The cubic equation

where we assume for simplicity that , has a classical
solution formula for the real root, called Cardano’s formula:

For a user of a pocket-size calculator, as well as for an inexpe-
rienced programmer, the solution presents several stumbling
blocks. First, the second radicand is negative and the fractional
power key or routine may not handle it. Next, even if we fix the
negative radical problem, when is small in magnitude and 
is of moderate size, the small number is the difference of two
numbers close to .sp�3

x
pq

                � �27q � s729q2 � 108p3

2 �1�3	
x �

1

3
 ��27q � s729q2 � 108p3

2 �1�3

p � 0

x 3 � px � q � 0

ln a � b � ln�1 �
a � eb

eb �
ln xexp�x� � ex

p � 192 sin���96�
p

p � 96s2 � s2 � s2 � s2 � s3

p
2�

y
�

N�1
 f �x� dx � �

�

n�N�1
 f �n� � y

�

N
 f �x� dx


�
n�1 n�1.001

f 	�b�f 	�a�

Df 	�a� � f 	�c� � f 	�b�
f 	a � c � b

f �b� � f �a� � f 	�c��b � a� � f 	�c�

b � 109 � 1a � 109f �x� � ln ln x
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the ninth decimal place? You can use the inequalities from the

and Taylor’s Formula to improve the accuracy of ln x.



Th
om

so
n 

Br
oo

ks
-C

ol
e 

co
py

rig
ht

 2
00

7

L I ES  MY  CALCULATOR  AND  COMPUTER  TOLD  ME ■ 5

converges to , a nonzero number, which gets multi-
plied by a fast-growing factor . We conclude that even if all
further calculations (after entering ) were performed without
errors, the initial inaccuracy would cause the computed
sequence to diverge.

12. (a) A consolation after the catastrophic outcome of Exercise 11:
If we rewrite the reduction formula to read

we can use the inequality used in the squeeze argument to
obtain improvements of the approximations of . Try 
again using this reverse approach.

(b) We used the reversed reduction formula to calculate quanti-
ties for which we have elementary formulas. To see that the
idea is even more powerful, develop it for the integrals

y
1

0
 x n��e1�x dx

a20an

an�1 �
1 � an

n

�an

a0

n!
c � �e � 1� where is a constant, , and , For

such the integrals are no longer elementary (not solvable
in “finite terms”), but the numbers can be calculated
quickly. Find the integrals for the particular choice 
and to five digits of accuracy.

13. An advanced calculator has a key for a peculiar function:

After so many warnings about the subtraction of close 
numbers, you may appreciate that the definition 

gives inaccurate results for small , where is close to .
Show that the use of the accurately evaluated function 
helps restore the accuracy of for small .xsinh x

E�x�
xsinh xx

sinh x � 1
2�e x � e�x�

E�x� � �1

e x � 1

x

   if x � 0

   if x � 0

n � 0, 1, . . . , 5
� � 1

3

�
1, . . . .n � 00 � � � 1�



ANSWERS

1. 3. 5. (a) 

9. (b) 1, x 3 � 3x � 4 � 0

4.82549424 � 10�1101
3
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Click here for solutions.S
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SOLUTIONS

1. The computer results are from Maple, with Digits:=16. The last column shows the values of the sixth-degree

Taylor polynomial for f(x) = csc2 x− x−2 near x = 0. Note that the second arrangement of Taylor’s polynomial is

easier to use with a calculator:

T6(x) =
1
3
+ 1

15
x2 + 2

289
x4 + 1

675
x6 = 1

675
x2 + 2

289
x2 + 1

15
x2 + 1

3

x f(x)calculator f(x)computer f(x)Taylor

0.1 0.33400107 0.3340010596845 0.33400106

0.01 0.333341 0.33334000010 0.33334000

0.001 0.3334 0.333333400 0.33333340

0.0001 0.34 0.3333334 0.33333333

0.00001 2.0 0.33334 0.33333333

0.000001 100 or 200 0.334 0.33333333

0.0000001 10,000 or 20,000 0.4 0.33333333
0.00000001 1,000,000 0 0.33333333

We see that the calculator results start to deteriorate seriously at x = 0.0001, and for smaller x, they are entirely

meaningless. The different results “100 or 200” etc. depended on whether we calculated [(sinx)2]−1 or

[(sinx)−1]2. With Maple, the result is off by more than 10% when x = 0.0000001 (compare with the calculator

result!) A detailed analysis reveals that the values of the function are always greater than 1
3
, but the computer

eventually gives results less than 1
3
.

The polynomial T6(x) was obtained by patient simplification of the expression for f(x), starting with

sin2(x) = 1
2
(1− cos 2x), where cos 2x = 1− (2x)2

2!
+
(2x)4

4!
− · · ·− (2x)10

10!
+R12(x). Consequently, the exact

value of the limit is T6(0) = 1
3 . It can also be obtained by several applications of l’Hospital’s Rule to the expression

f(x) =
x2 − sin2x
x2 sin2x

with intermediate simplifications.

3. From f(x) =
x25

(1.0001)x
(We may assume x > 0; Why?), we have ln f(x) = 25 lnx− x ln(1.0001) and

f 0(x)
f(x)

=
25

x
− ln(1.0001). This derivative, as well as the derivative f 0(x) itself, is positive for

0 < x < x0 =
25

ln(1.0001)
≈ 249,971.015, and negative for x > x0. Hence the maximum value of f(x) is

f(x0) =
x250

(1.0001)x0
, a number too large to be calculated directly. Using decimal logarithms,

log10 f(x0) ≈ 124.08987757, so that f(x0) ≈ 1.229922× 10124. The actual value of the limit is lim
x→∞

f(x) = 0;

it would be wasteful and inelegant to use l’Hospital’s Rule twenty-five times since we can transform f(x) into

f(x) =
x

(1.0001)x/25

25

, and the inside expression needs just one application of l’Hospital’s Rule to give 0.
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5. For f(x) = ln lnx with x ∈ [a, b], a = 109, and b = 109 + 1, we need f 0(x) = 1

x lnx
, f 00(x) = − lnx+ 1

x2(lnx)2
.

(a) f 0(b) < D < f 0(a), where f 0(a) ≈ 4.8254942434× 10−11, f 0(b) ≈ 4.8254942383× 10−11.

(b) Let’s estimate f 0(b)− f 0(a) = (b− a)f 00(c1) = f 00(c1). Since f 00 increases (its absolute value decreases), we

have |f 0(b)− f 0(a)| ≤ |f 00(a)| ≈ 5.0583× 10−20.

7. (a) The 11-digit calculator value of 192 sin π
96
is 6.2820639018, while the value (on the same device) of p before

rationalization is 6.282063885, which is 1.68× 10−8 less than the trigonometric result.

(b) p = 96

2 +
√
3 · 2 + 2 +

√
3 · 2 + 2 + 2 +

√
3 · 2 + 2 + 2 + 2 +

√
3

but of course we can avoid repetitious calculations by storing intermediate results in a memory:

p1 = 2 +
√
3, p2 =

√
2 + p1, p3 =

√
2 + p2, p4 =

√
2 + p3, and so p =

96

p1p2p3p4

According to this formula, a calculator gives p ≈ 6.2820639016, which is within 2× 10−10 of the trigonometric
result. With Digits:=16;, Maple gives p ≈ 6.282063901781030 before rationalization (off the trig result by
about 1.1× 10−14) and p ≈ 6.282063901781018 after rationalization (error of about 1.7× 10−15), a gain of
about one digit of accuracy for rationalizing. If we sets Digits:=100;, the difference between Maple’s
calculation of 192 sin π

96
and the radical is only about 4× 10−99.

9. (a) Let A = 1
2
27q + 729q2 + 108p3

1/3

and B = 1
2
27q − 729q2 + 108p3

1/3

.

Then A3 +B3 = 27q and AB = 1
4
[729q2 − (729q2 + 108p3)]1/3 = −3p. Substitute into the formula

A+B =
A3 +B3

A2 −AB +B2
where we replace B by −3p

A
:

x = 1
3
(A+B) =

27q/3

1
2
27q + 729q2 + 108p3

2/3

+ 3p+ 9p2 1
2
27q + 729q2 + 108p3

−2/3

which almost yields the given formula; since replacing q by −q results in replacing x by −x, a simple discussion
of the cases q > 0 and q < 0 allows us to replace q by |q| in the denominator, so that it involves only positive
numbers. The problems mentioned in the introduction to this exercise have disappeared.

(b) A direct attack works best here. To save space, let α = 2 +
√
5, so we can rationalize, using α−1 = 2 +

√
5

and α− α−1 = 4 (check it!):

u =
4

α2/3 + 1 + α−2/3
· α

1/3 − α−1/3

α1/3 − α−1/3
=
4(α1/3 − α−1/3)

α− α−1
= α1/3 − α−1/3

and we cube the expression for u: u3 = α− 3α1/3 + 3α−1/3 − α−1 = 4− 3u,
u3 + 3u− 4 = (u− 1)(u2 + u+ 4) = 0, so that the only real root is u = 1. A check using the formula

from part (a): p = 3, q = −4, so 729q2 + 108p3 = 14,580 = 542 × 5, and

x =
36

54 + 27
√
5

2/3
+ 9 + 81 54 + 27

√
5
−2/3 , which simplifies to the given form.
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11. Proof that lim
n→∞

an = 0: From 1 ≤ e1−x ≤ e it follows that xn ≤ e1−xxn ≤ xne, and integration gives

1

n+ 1
=

1

0

xn dx ≤
1

0

e1−xxn dx ≤
1

0

xne dx =
e

n+ 1
, that is, 1

n+ 1
≤ an ≤ e

n+ 1
, and since

lim
n→∞

1

n+ 1
= lim

n→∞
e

n+ 1
= 0, it follows from the Squeeze Theorem that lim

n→∞
an = 0. Of course, the expression

1/(n+ 1) on the left side could have been replaced by 0 and the proof would still be correct.

Calculations: Using the formula an = e− 1− 1

1!
+
2

2!
+ · · ·+ 1

n!
n! with an 11-digit calculator:

n an n an n an

0 1.7182818284 7 0.1404151360 14 −5.07636992
1 0.7182818284 8 0.1233210880 15 −77.1455488
2 0.4365636568 9 0.1098897920 16 −1235.3287808
3 0.3096909704 10 0.0988979200 17 −21001.589274
4 0.2387638816 11 0.0878771200 18 −378029.60693
5 0.1938194080 12 0.0545254400 19 −7182563.5317
6 0.1629164480 13 −0.2911692800 20 −143651271.63

It is clear that the values calculated from the direct reduction formula will diverge to −∞. If we instead calculate an
using the reduction formula in Maple (with Digits:=16), we get some odd results: a20 = −1000, a28 = 1014,
a29 = 0, and a30 = 1017, for examples. But for larger n, the results are at least small and positive (for example,

a1000 ≈ 0.001.) For n > 32,175, we get the delightful object too large error message. If, instead of using the

reduction formula, we integrate directly with Maple, the results are much better.

13. We can start by expressing ex and e−x in terms of E(x) = (ex − 1)/x (x 6= 0), where E(0) = 1 to make

E continuous at 0 (by l’Hospital’s Rule). Namely, ex = 1 + xE(x), e−x = 1− xE(−x) and

sinhx =
1 + xE(x)− [1− xE(−x)]

2
= 1

2
x[E(x) +E(−x)], where the addition involves only positive numbers

E(x) and E(−x), thus presenting no loss of accuracy due to subtraction.
Another form, which calls the function E only once:

We write sinhx = (ex)2 − 1
2ex

=
[1 + xE(x)]2 − 1
2[1 + xE(x)]

=
x 1 + 1

2 |x|E(|x|) E(|x|)
1 + |x|E(|x|) , taking advantage of the fact

that sinhx
x

is an even function, so replacing x by |x| does not change its value.




