## **2.3 APPLIED PROJECT:** BUILDING A BETTER ROLLER COASTER

This project can be completed anytime after you have studied Section 2.3 in the textbook.



A

Suppose you are asked to design the first ascent and drop for a new roller coaster. By studying photographs of your favorite coasters, you decide to make the slope of the ascent 0.8 and the slope of the drop -1.6. You decide to connect these two straight stretches  $y = L_1(x)$  and  $y = L_2(x)$  with part of a parabola  $y = f(x) = ax^2 + bx + c$ , where x and f(x) are measured in feet. For the track to be smooth there can't be abrupt changes in direction, so you want the linear segments  $L_1$  and  $L_2$  to be tangent to the parabola at the transition points P and Q. (See the figure.) To simplify the equations you decide to place the origin at P.

- 1. (a) Suppose the horizontal distance between P and Q is 100 ft. Write equations in a, b, and c that will ensure that the track is smooth at the transition points.
- (b) Solve the equations in part (a) for a, b, and c to find a formula for f(x).
- (c) Plot  $L_1$ , f, and  $L_2$  to verify graphically that the transitions are smooth.
  - (d) Find the difference in elevation between P and Q.
- 2. The solution in Problem 1 might *look* smooth, but it might not *feel* smooth because the piecewise defined function [consisting of  $L_1(x)$  for x < 0, f(x) for  $0 \le x \le 100$ , and  $L_2(x)$  for x > 100] doesn't have a continuous second derivative. So you decide to improve the design by using a quadratic function  $q(x) = ax^2 + bx + c$  only on the interval  $10 \le x \le 90$  and connecting it to the linear functions by means of two cubic functions:

$$g(x) = kx^3 + lx^2 + mx + n$$
  $0 \le x < 10$ 

$$h(x) = px^3 + qx^2 + rx + s \qquad 90 < x \le 100$$

- (a) Write a system of equations in 11 unknowns that ensure that the functions and their first two derivatives agree at the transition points.
- (b) Solve the equations in part (a) with a computer algebra system to find formulas for q(x), g(x), and h(x).
  - (c) Plot  $L_1$ , g, q, h, and  $L_2$ , and compare with the plot in Problem 1(c).