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CHAPTER 8

1. If , find .

2. A function is defined by

Where is continuous?

3.

(b) Find the sum of the series

4. Let be a sequence of points determined as in the figure. Thus , ,
and angle is a right angle. Find .

5. To construct the snowflake curve, start with an equilateral triangle with sides of length . 
Step 1 in the construction is to divide each side into three equal parts, construct an equilateral
triangle on the middle part, and then delete the middle part (see the figure). Step 2 is to repeat Step
1 for each side of the resulting polygon. This process is repeated at each succeeding step. The
snowflake curve is the curve that results from repeating this process indefinitely.
(a) Let , , and represent the number of sides, the length of a side, and the total length of the

th approximating curve (the curve obtained after Step of the construction), respectively.
Find formulas for , , and .

(b) Show that as .
(c) Sum an infinite series to find the area enclosed by the snowflake curve. 

Parts (b) and (c) show that the snowflake curve is infinitely long but encloses only a finite area.

6. Find the sum of the series

where the terms are the reciprocals of the positive integers whose only prime factors are 2s and 3s.

7. (a) Show that for ,

if the left side lies between and .
(b) Show that

(c) Deduce the following formula of John Machin (1680–1751):
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(a) Show that .tan 12 x � cot 12 x � 2 cot x
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(d) Use the Maclaurin series for to show that

(e) Show that

(f) Deduce that, correct to seven decimal places,

Machin used this method in 1706 to find correct to 100 decimal places. Recently, with the aid of
computers, the value of has been computed to increasingly greater accuracy. In 1999, Takahashi
and Kanada, using methods of Borwein and Brent Salamin, calculated the value of to
206,158,430,000 decimal places!

8. (a) Prove a formula similar to the one in Problem 7(a) but involving instead of .
(b) Find the sum of the series

9. Find the interval of convergence of and find its sum.

10. If , show that

lim
n l �

 (a0 sn � a1 sn � 1 � a2 sn � 2 � � � � � ak sn � k ) � 0
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0.004184075 � arctan 1
239 � 0.004184077 

0.197395560 � arctan 15 � 0.197395562 

Hint: Try the special cases and first. If you can see how to prove the assertion for
these cases, then you will probably see how to prove it in general.

11. Find the sum of the series .

12. Suppose you have a large supply of books, all the same size, and you stack them at the edge of a
table, with each book extending farther beyond the edge of the table than the one beneath it. Show
that it is possible to do this so that the top book extends entirely beyond the table. In fact, show that
the top book can extend any distance at all beyond the edge of the table if the stack is high enough.
Use the following method of stacking: The top book extends half its length beyond the second
book. The second book extends a quarter of its length beyond the third. The third extends one-sixth
of its length beyond the fourth, and so on. (Try it yourself with a deck of cards.) Consider centers
of mass.

13. Let

Show that .

14. If , evaluate the expression

15. Suppose that circles of equal diameter are packed tightly in rows inside an equilateral tri-
angle. (The figure illustrates the case .) If is the area of the triangle and is the total area
occupied by the rows of circles, show that
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16. A sequence is defined recursively by the equations

Find the sum of the series .

17. Taking the value of at 0 to be 1 and integrating a series term-by-term, show that

18. Starting with the vertices , , , of a square, we construct further
points as shown in the figure: is the midpoint of is the midpoint of is the mid-
point of , and so on. The polygonal spiral path approaches a point 
inside the square.
(a) If the coordinates of are , show that and find a similar

equation for the -coordinates.
(b) Find the coordinates of .

19. If has positive radius of convergence and , show that

20. Right-angled triangles are constructed as in the figure. Each triangle has height 1 and its base is the
hypotenuse of the preceding triangle. Show that this sequence of triangles makes indefinitely many
turns around by showing that is a divergent series.

21. Consider the series whose terms are the reciprocals of the positive integers that can be written in
base 10 notation without using the digit 0. Show that this series is convergent and the sum is less
than 90.

22. (a) Show that the Maclaurin series of the function

is

where is the Fibonacci number, that is, , , and 
for . [Hint: Write and multiply both sides of
this equation by .]

(b) By writing as a sum of partial fractions and thereby obtaining the Maclaurin series in a
different way, find an explicit formula for the Fibonacci number.nth
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1. 3. (b) 0 if , if , k an integer

5. (a) (c)

9. ��1, 1�, �x 3 � 4x 2 � x���1 � x�4

2s3�5sn � 3 � 4n, ln � 1�3n, pn � 4n�3n�1

x � k��1�x� � cot xx � 015!�5! � 10,897,286,400

ANSWERS

SolutionsS
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SOLUTIONS

ExercisesE
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1. It would be far too much work to compute 15 derivatives of f . The key idea is to remember that f (n)(0) occurs in

the coefficient of xn in the Maclaurin series of f . We start with the Maclaurin series for sin:

sinx = x− x3

3!
+

x5

5!
− · · · . Then sin(x3) = x3 − x9

3!
+

x15

5!
− · · · , and so the coefficient of x15 is

f (15)(0)

15!
=
1

5!
. Therefore, f (15)(0) = 15!

5!
= 6 · 7 · 8 · 9 · 10 · 11 · 12 · 13 · 14 · 15 = 10,897,286,400.

3. (a) From Formula 14a in Appendix A, with x = y = θ, we get tan 2θ = 2 tan θ

1− tan2 θ , so cot 2θ =
1− tan2 θ
2 tan θ

⇒

2 cot 2θ =
1− tan2 θ
tan θ

= cot θ − tan θ. Replacing θ by 1
2x, we get 2 cotx = cot

1
2x− tan 1

2x, or

tan 1
2
x = cot 1

2
x− 2 cotx

(b) From part (a) with x

2n−1
in place of x, tan x

2n
= cot

x

2n
− 2 cot x

2n−1
, so the nth partial sum of

∞

n=1

1

2n
tan

x

2n
is

sn =
tan(x/2)

2
+
tan(x/4)

4
+
tan(x/8)

8
+ · · ·+ tan(x/2n)

2n

=
cot(x/2)

2
− cotx +

cot(x/4)

4
− cot(x/2)

2
+

cot(x/8)

8
− cot(x/4)

4
+ · · ·

+
cot(x/2n)

2n
− cot(x/2n−1)

2n−1
= − cotx+ cot(x/2n)

2n
(telescoping sum)

Now cot(x/2
n)

2n
=

cos(x/2n)

2n sin(x/2n)
=
cos(x/2n)

x
· x/2n

sin(x/2n)
→ 1

x
· 1 = 1

x
as n→∞ since x/2n → 0

for x 6= 0. Therefore, if x 6= 0 and x 6= kπ where k is any integer, then

∞

n=1

1

2n
tan

x

2n
= lim

n→∞
sn = lim

n→∞
− cotx+ 1

2n
cot

x

2n
= − cotx+ 1

x

If x = 0, then all terms in the series are 0, so the sum is 0.

5. (a) At each stage, each side is replaced by four shorter sides, each of

length 1
3 of the side length at the preceding stage. Writing s0 and c0

for the number of sides and the length of the side of the initial

triangle, we generate the table at right. In general, we have

sn = 3 · 4n and cn = 1
3

n, so the length of the perimeter at the nth

stage of construction is pn = sncn = 3 · 4n · 1
3

n
= 3 · 4

3

n.

s0 = 3 c0 = 1

s1 = 3 · 4 c1 = 1/3

s2 = 3 · 42 c2 = 1/3
2

s3 = 3 · 43 c3 = 1/3
3

· · · · · ·

(b) pn =
4n

3n−1
= 4

4

3

n−1
. Since 4

3
> 1, pn →∞ as n→∞.
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(c) The area of each of the small triangles added at a given stage is one-ninth of the area of the triangle added at the

preceding stage. Let a be the area of the original triangle. Then the area an of each of the small triangles added

at stage n is an = a · 1
9n

=
a

9n
. Since a small triangle is added to each side at every

stage, it follows that the total area An added to the figure at the nth stage is

An = sn−1 · an = 3 · 4n−1 · a

9n
= a · 4

n−1

32n−1
. Then the total area enclosed by the snowflake curve is

A = a+A1 +A2 +A3 + · · · = a+ a · 1
3
+ a · 4

33
+ a · 4

2

35
+ a · 4

3

37
+ · · · . After the first term, this is a

geometric series with common ratio 4
9
, so A = a+

a/3

1− 4
9

= a+
a

3
· 9
5
=
8a

5
. But the area of the original

equilateral triangle with side 1 is a = 1
2 · 1 · sin π

3 =
√
3
4 . So the area enclosed by the snowflake curve is

8
5 ·

√
3
4 = 2

√
3

5 .

7. (a) Let a = arctanx and b = arctan y. Then, from Formula 14b in Appendix A,

tan(a− b) =
tan a− tan b
1 + tan a tan b

=
tan(arctanx)− tan(arctan y)
1 + tan(arctanx) tan(arctan y)

=
x− y

1 + xy
.

Now arctanx− arctan y = a− b = arctan(tan(a− b)) = arctan
x− y

1 + xy
since − π

2
< a− b < π

2
.

(b) From part (a) we have

arctan 120
119
− arctan 1

239
= arctan

120
119
− 1

239

1 + 120
119

· 1
239

= arctan
28,561
28,441
28,561
28,441

= arctan 1 = π
4

(c) Replacing y by −y in the formula of part (a), we get arctanx+ arctan y = arctan x+ y

1− xy
. So

4 arctan 1
5
= 2 arctan 1

5
+ arctan 1

5
= 2arctan

1
5
+ 1

5

1− 1
5
· 1
5

= 2arctan 5
12
= arctan 5

12
+ arctan 5

12

= arctan
5
12 +

5
12

1− 5
12
· 5
12

= arctan 120
119

Thus, from part (b), we have 4 arctan 1
5
− arctan 1

239
= arctan 120

119
− arctan 1

239
= π

4
.

(d) From Example 7 in Section 8.6 we have arctanx = x− x3

3
+

x5

5
− x7

7
+

x9

9
− x11

11
+ · · · , so

arctan
1

5
=
1

5
− 1

3 · 53 +
1

5 · 55 −
1

7 · 57 +
1

9 · 59 −
1

11 · 511 + · · ·

This is an alternating series and the size of the terms decreases to 0, so by the Alternating Series Estimation

Theorem, the sum lies between s5 and s6, that is, 0.197395560 < arctan 1
5
< 0.197395562.

(e) From the series in part (d) we get arctan 1

239
=

1

239
− 1

3 · 2393 +
1

5 · 2395 − · · · . The third term is less than

2.6× 10−13, so by the Alternating Series Estimation Theorem, we have, to nine decimal places,
arctan 1

239
≈ s2 ≈ 0.004184076. Thus, 0.004184075 < arctan 1

239
< 0.004184077.
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(f ) From part (c) we have π = 16arctan 1
5 − 4 arctan 1

239 , so from parts (d) and (e) we have

16(0.197395560)− 4(0.004184077) < π < 16(0.197395562) − 4(0.004184075) ⇒
3.141592652 < π < 3.141592692. So, to 7 decimal places, π ≈ 3.1415927.

9. We start with the geometric series
∞

n=0

xn =
1

1− x
, |x| < 1, and differentiate:

∞

n=1

nxn−1 =
d

dx

∞

n=0

xn =
d

dx

1

1− x
=

1

(1− x)2
for |x| < 1 ⇒

∞

n=1

nxn = x
∞

n=1

nxn−1 =
x

(1− x)2
for |x| < 1. Differentiate again:

∞

n=1

n2xn−1 =
d

dx

x

(1− x)2
=
(1− x)2 − x · 2 (1− x) (−1)

(1− x)4
=

x+ 1

(1− x)3
⇒

∞

n=1

n2xn =
x2 + x

(1− x)3
⇒

∞

n=1

n3xn−1 =
d

dx

x2 + x

(1− x)3
=
(1− x)3 (2x+ 1)− x2 + x 3 (1− x)2 (−1)

(1− x)6
=

x2 + 4x+ 1

(1− x)4
⇒

∞

n=1

n3xn =
x3 + 4x2 + x

(1− x)4
, |x| < 1. The radius of convergence is 1 because that is the radius of convergence for

the geometric series we started with. If x = ±1, the series is n3 (±1)n, which diverges by the Test For
Divergence, so the interval of convergence is (−1, 1).

11. ln 1− 1

n2
= ln

n2 − 1
n2

= ln
(n+ 1)(n− 1)

n2
= ln[(n+ 1)(n− 1)]− lnn2

= ln(n+ 1) + ln(n− 1)− 2 lnn
= ln(n− 1)− lnn− lnn+ ln(n+ 1)

= ln
n− 1
n

− [lnn− ln(n+ 1)] = ln n− 1
n

− ln n

n+ 1
.

Let sk =
k

n=2

ln 1− 1

n2
=

k

n=2

ln
n− 1
n

− ln n

n+ 1
for k ≥ 2. Then

sk = ln
1

2
− ln 2

3
+ ln

2

3
− ln 3

4
+ · · ·+ ln

k − 1
k

− ln k

k + 1
= ln

1

2
− ln k

k + 1
, so

∞

n=2

ln 1− 1

n2
= lim

k→∞
sk = lim

k→∞
ln
1

2
− ln k

k + 1
= ln

1

2
− ln 1 = ln 1− ln 2− ln 1 = − ln 2.

13. u = 1 +
x3

3!
+

x6

6!
+

x9

9!
+ · · · , v = x+

x4

4!
+

x7

7!
+

x10

10!
+ · · · , w = x2

2!
+

x5

5!
+

x8

8!
+ · · · .

Use the Ratio Test to show that the series for u, v, and w have positive radii of convergence (∞ in each case), so

Theorem 8.6.2 applies, and hence, we may differentiate each of these series:

du

dx
=
3x2

3!
+
6x5

6!
+
9x8

9!
+ · · · = x2

2!
+

x5

5!
+

x8

8!
+ · · · = w

Similarly, dv
dx

= 1 +
x3

3!
+

x6

6!
+

x9

9!
+ · · · = u, and dw

dx
= x+

x4

4!
+

x7

7!
+

x10

10!
+ · · · = v.
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So u0 = w, v0 = u, and w0 = v. Now differentiate the left hand side of the desired equation:

d

dx
u3 + v3 + w3 − 3uvw = 3u2u0 + 3v2v0 + 3w2w0 − 3(u0vw + uv0w + uvw0)

= 3u2w + 3v2u+ 3w2v − 3(vw2 + u2w + uv2) = 0 ⇒

u3 + v3 + w3 − 3uvw = C. To find the value of the constant C, we put x = 0 in the last equation and get

13 + 03 + 03 − 3(1 · 0 · 0) = C ⇒ C = 1, so u3 + v3 + w3 − 3uvw = 1.

15. If L is the length of a side of the equilateral triangle, then the area is A = 1
2L ·

√
3
2 L =

√
3
4 L2 and so L2 = 4√

3
A.

Let r be the radius of one of the circles. When there are n rows of circles, the figure shows that

L =
√
3r + r + (n− 2)(2r) + r +

√
3r = r 2n− 2 + 2√3 , so r = L

2 n+
√
3− 1 .

The number of circles is 1 + 2 + · · ·+ n =
n(n+ 1)

2
, and so the total area of the circles is

An =
n(n+ 1)

2
πr2 =

n(n+ 1)

2
π

L2

4 n+
√
3− 1 2

=
n(n+ 1)

2
π

4A/
√
3

4 n+
√
3− 1 2

=
n(n+ 1)

n+
√
3− 1 2

πA

2
√
3

⇒

An

A
=

n(n+ 1)

n+
√
3− 1 2

π

2
√
3

=
1 + 1/n

1 +
√
3− 1 /n

2

π

2
√
3
→ π

2
√
3
as n→∞

17. As in Section 8.6 we have to integrate the function xx by integrating series. Writing xx = (elnx)x = ex ln x and

using the Maclaurin series for ex, we have xx = (elnx)x = ex lnx =
∞

n=0

(x lnx)n

n!
=

∞

n=0

xn(lnx)n

n!
.

As with power series, we can integrate this series term-by-term:

1

0

xx dx =
∞

n=0

1

0

xn(lnx)n

n!
dx =

∞

n=0

1

n!

1

0

xn(lnx)n dx

We integrate by parts with u = (lnx)n, dv = xn dx, so du = n(lnx)n−1

x
dx and v = xn+1

n+ 1
:

1

0

xn(lnx)n dx = lim
t→0+

1

t

xn(lnx)n dx = lim
t→0+

xn+1

n+ 1
(lnx)n

1

t

− lim
t→0+

1

t

n

n+ 1
xn(lnx)n−1 dx

= 0− n

n+ 1

1

0

xn(lnx)n−1 dx

(where l’Hospital’s Rule was used to help evaluate the first limit).
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Further integration by parts gives
1

0

xn(lnx)k dx = − k

n+ 1

1

0

xn(lnx)k−1 dx and, combining

these steps, we get
1

0

xn(lnx)n dx =
(−1)n n!
(n+ 1)n

1

0

xn dx =
(−1)n n!
(n+ 1)n+1

⇒

1

0

xx dx =
∞

n=0

1

n!

1

0

xn(lnx)n dx =
∞

n=0

1

n!

(−1)n n!
(n+ 1)n+1

=
∞

n=0

(−1)n
(n+ 1)n+1

=
∞

n=1

(−1)n−1
nn

.

19. Let f(x) = ∞
m=0 cmx

m and g(x) = ef(x) = ∞
n=0 dnx

n. Then g0(x) = ∞
n=0 ndnx

n−1, so ndn occurs as the

coefficient of xn−1. But also

g0(x) = ef(x)f 0 (x) = ∞
n=0 dnx

n ∞
m=1mcmx

m−1

= d0 + d1x+ d2x
2 + · · ·+ dn−1x

n−1 + · · · c1 + 2c2x+ 3c3x
2 + · · ·+ ncnx

n−1 + · · ·

so the coefficient of xn−1 is c1dn−1 + 2c2dn−2 + 3c3dn−3 + · · ·+ ncnd0 =
n
i=1 icidn−i. Therefore,

ndn =
n
i=1 icidn−i.

21. Call the series S. We group the terms according to the number of digits in their denominators:

S = 1
1 +

1
2 + · · ·+ 1

8 +
1
9

g1

+ 1
11 + · · ·+ 1

99

g2

+ 1
111 + · · ·+ 1

999

g3

+ · · ·

Now in the group gn, since we have 9 choices for each of the n digits in the denominator, there are 9n terms.

Furthermore, each term in gn is less than 1
10n−1 [except for the first term in g1]. So gn < 9n · 1

10n−1 = 9
9
10

n−1.

Now ∞
n=1 9

9
10

n−1 is a geometric series with a = 9 and r = 9
10

< 1. Therefore, by the Comparison Test,

S = ∞
n=1 gn < ∞

n=1 9
9
10

n−1
= 9

1− 9/10 = 90.




