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[A] Click here for answers. [s] Click here for solutions.

. Each edge of a cubical box has length 1 m. The box contains nine spherical balls with the same

radius r. The center of one ball is at the center of the cube and it touches the other eight balls. Each

of the other eight balls touches three sides of the box. Thus, the balls are tightly packed in the box.
(See the figure.) Find r. (If you have trouble with this problem, read about the problem-solving
strategy entitled Use analogy in Additional Topics: Principles of Problem Solving.)

. Let B be a solid box with length L, width W, and height H. Let S be the set of all points that are a

distance at most 1 from some point of B. Express the volume of S in terms of L, W,
and H.

. Let L be the line of intersection of the planescx +y + z=candx — cy + cz = —1,

where c is a real number.

(a) Find symmetric equations for L.

(b) As the number c varies, the line L sweeps out a surface S. Find an equation for the curve of
intersection of S with the horizontal plane z = ¢ (the trace of S in the plane z = 7).

(c) Find the volume of the solid bounded by S and the planes z = 0 and z = 1.

. A plane is capable of flying at a speed of 180 km/h in still air. The pilot takes off from an airfield

and heads due north according to the plane’s compass. After 30 minutes of flight time, the pilot
notices that, due to the wind, the plane has actually traveled 80 km at an angle 5° east of north.
(a) What is the wind velocity?

(b) In what direction should the pilot have headed to reach the intended destination?

. Suppose a block of mass m is placed on an inclined plane, as shown in the figure. The block’s

descent down the plane is slowed by friction; if € is not too large, friction will prevent the block

from moving at all. The forces acting on the block are the weight W, where | W | = mg (g is the

acceleration due to gravity); the normal force N (the normal component of the reactionary force of
the plane on the block), where | N | = n; and the force F due to friction, which acts parallel to the
inclined plane, opposing the direction of motion. If the block is at rest and 6 is increased,
also increase until ultimately | F | reaches its maximum, beyond which the block begins to
slide. At this angle 6, it has been observed that | F | is proportional to . Thus, when | F | is maxi-
mal, we can say that | F| = w,n, where w, is called the coefficient of static friction and depends on
the materials that are in contact.

(a) Observe that N + F + W = 0 and deduce that u, = tan 6.

(b) Suppose that, for § > 6, an additional outside force H is applied to the block, horizontally
from the left, and let | H| = h. If h is small, the block may still slide down the plane; if / is
large enough, the block will move up the plane. Let 4, be the smallest value of / that allows
the block to remain motionless (so that | F | is maximal).

By choosing the coordinate axes so that F lies along the x-axis, resolve each force into com-
ponents parallel and perpendicular to the inclined plane and show that

Bmin SINO + mgcosO = n and Amin COS 0 + uyn = mg sin 0

(c) Show that Nmin = mg tan(0 — 6,)

Does this equation seem reasonable? Does it make sense for § = 6,? As 6 — 90°? Explain.
(d) Let hmax be the largest value of 4 that allows the block to remain motionless. (In which direc-
tion is F heading?) Show that

Nmax = mg tan(0 + 0)

Does this equation seem reasonable? Explain.

F | must
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6. Suppose the three coordinate planes are all mirrored and a light ray given by the vector

a = (ay, a», as) first strikes the xz-plane, as shown in the figure. Use the fact that the angle of
incidence equals the angle of reflection to show that the direction of the reflected ray is given by

b = (ai, —as, a3). Deduce that, after being reflected by all three mutually perpendicular mirrors,
the resulting ray is parallel to the initial ray. (American space scientists used this principle, together
with laser beams and an array of corner mirrors on the Moon, to calculate very precisely the dis-
tance from the Earth to the Moon.)

. A particle P moves with constant angular speed w around a circle whose center is at the origin and

whose radius is R. The particle is said to be in uniform circular motion. Assume that the motion is

counterclockwise and that the particle is at the point (R, 0) when ¢ = 0. The position vector at time

t=0isr(f) = Rcos wti + R sin wtj.

(a) Find the velocity vector v and show that v - r = 0. Conclude that v is tangent to the circle and
points in the direction of the motion.

(b) Show that the speed | v | of the particle is the constant wR. The period T of the particle is the
time required for one complete revolution. Conclude that

_ 2R _ 27w
vl e

(c) Find the acceleration vector a. Show that it is proportional to r and that it points toward the
origin. An acceleration with this property is called a centripetal acceleration. Show that the
magnitude of the acceleration vector is |a| = Rw’.

(d) Suppose that the particle has mass m. Show that the magnitude of the force F that is required to
produce this motion, called a centripetal force, is

. A circular curve of radius R on a highway is banked at an angle 6 so that a car can safely traverse

the curve without skidding when there is no friction between the road and the tires. The loss of
friction could occur, for example, if the road is covered with a film of water or ice. The rated speed
vg of the curve is the maximum speed that a car can attain without skidding. Suppose a car of mass
m is traversing the curve at the rated speed vgz. Two forces are acting on the car: the vertical force,
mg, due to the weight of the car, and a force F exerted by, and normal to, the road. (See the figure.)

The vertical component of F balances the weight of the car, so that | F| cos @ = mg. The hori-
zontal component of F produces a centripetal force on the car so that, by Newton’s Second Law
and part (d) of Problem 1,

2
|F|sin 6 = Uk

(a) Show that vz = Rg tan 6.

(b) Find the rated speed of a circular curve with radius 400 ft that is banked at an angle of 12°.

(c) Suppose the design engineers want to keep the banking at 12°, but wish to increase the rated
speed by 50%. What should the radius of the curve be?

. A projectile is fired from the origin with angle of elevation « and initial speed v,. Assuming that air

resistance is negligible and that the only force acting on the projectile is gravity, g,
we showed in Example 5 in Section 10.9 that the position vector of the projectile is
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r(r) = (nocos a)ri + [(vosin a)r — ygt*] j. We also showed that the maximum horizontal distance

of the projectile is achieved when @ = 45° and in this case the range is R = v3/g.

(a) At what angle should the projectile be fired to achieve maximum height and what is the maxi-
mum height?

(b) Fix the initial speed v, and consider the parabola x> + 2Ry — R* = 0, whose graph is shown in
the figure. Show that the projectile can hit any target inside or on the boundary

y y

—R 0 R X 0 D X

of the region bounded by the parabola and the x-axis, and that it can’t hit any target outside this
region.

Suppose that the gun is elevated to an angle of inclination « in order to aim at a target that is
suspended at a height 4 directly over a point D units downrange. The target is released at the
instant the gun is fired. Show that the projectile always hits the target, regardless of the value v,
provided the projectile does not hit the ground “before” D.

(c

~

. (a) A projectile is fired from the origin down an inclined plane that makes an angle 6 with the

horizontal. The angle of elevation of the gun and the initial speed of the projectile are a and vy,
respectively. Find the position vector of the projectile and the parametric equations of the path
of the projectile as functions of the time 7. (Ignore air resistance.)

(b) Show that the angle of elevation « that will maximize the downhill range is the angle halfway
between the plane and the vertical.

(c) Suppose the projectile is fired up an inclined plane whose angle of inclination is 6. Show that,
in order to maximize the (uphill) range, the projectile should be fired in the direction halfway
between the plane and the vertical.

(d) In a paper presented in 1686, Edmond Halley summarized the laws of gravity and projectile
motion and applied them to gunnery. One problem he posed involved firing a projectile to hit a
target a distance R up an inclined plane. Show that the angle at which the projectile should be
fired to hit the target but use the least amount of energy is the same as the angle in part (c).
(Use the fact that the energy needed to fire the projectile is proportional to
the square of the initial speed, so minimizing the energy is equivalent to minimizing the initial
speed.)

. A projectile of mass m is fired from the origin at an angle of elevation «. In addition to gravity,

assume that air resistance provides a force that is proportional to the velocity and that opposes the
motion. Then, by Newton’s Second Law, the total force acting on the projectile satisfies the
equation

d’R dR
— —magi — k——
[ " ar "9l dt

where R is the position vector and k > 0 is the constant of proportionality.
(a) Show that Equation 1 can be integrated to obtain the equation
dR

k
—+ —R=vy, —gtj
dt m Vo~ gt

dR
where vo = v(0) = ?(O)

(b) Multiply both sides of the equation in part (a) by e *" and show that the left-hand side of the
resulting equation is the derivative of the product e *”'R(7). Then integrate to find an expres-
sion for the position vector R(z).

12. Find the curvature of the curve with parametric equations

x= Lt sin(;70%)do  y = Lt cos(3 m6%) db
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13. A disk of radius 1 is rotating in the counterclockwise direction at a constant angular speed w. A

15.

particle starts at the center of the disk and moves toward the edge along a fixed radius so that its
position at time 7, t = 0, is given by r(r) = tR(z), where

R(?) = cos wti + sin wt j
(a) Show that the velocity v of the particle is
v=coswti+sinwtj+ tv,

where v, = R'(¢) is the velocity of a point on the edge of the disk.

(b) Show that the acceleration a of the particle is

=

a=2v, + ta,

where a, = R”(7) is the acceleration of a point on the rim of the disk. The extra term 2v, is
called the Coriolis acceleration; it is the result of the interaction of the rotation of the disk and
the motion of the particle. One can obtain a physical demonstration of this acceleration by
walking toward the edge of a moving merry-go-round.

(c) Determine the Coriolis acceleration of a particle that moves on a rotating disk according to the
equation

r(f) = e 'cos wti + e 'sin wtj

. In designing transfer curves to connect sections of straight railroad tracks, it’s important to realize

that the acceleration of the train should be continuous so that the reactive force exerted by the train
on the track is also continuous. Because of the formulas for the components of acceleration in
Section 10.9, this will be the case if the curvature varies continuously.
(a) A logical candidate for a transfer curve to join existing tracks given by y = 1 for x < 0 and
y = /2 — x for x = 1/4/2 might be the function f(x) = /1 — x2 0 < x < 1/4/2, whose
graph is the arc of the circle shown in the figure. It looks reasonable at first glance. Show that
the function

1 if x<0
F(x) =3J1—-x2 if0<x<1/y2
V2—-x ifx=1/2

is continuous and has continuous slope, but does not have continuous curvature. Therefore, f is
not an appropriate transfer curve.

(b) Find a fifth-degree polynomial to serve as a transfer curve between the following straight line
segments: y = 0 for x < 0 and y = x for x = 1. Could this be done with a fourth-degree poly-
nomial? Use a graphing calculator or computer to sketch the graph of the “connected” function
and check to see that it looks like the one in the figure.

y y
S y=F(x) y=x
1
transfer curve
y=0 ‘
0 1 X 0 | X
J2

A ball rolls off a table with a speed of 2 ft/s. The table is 3.5 ft high.

(a) Determine the point at which the ball hits the floor and find its speed at the instant of impact.

(b) Find the angle 6 between the path of the ball and the vertical line drawn through the point of
impact. (See the figure.)

(c) Suppose the ball rebounds from the floor at the same angle with which it hits the floor, but
loses 20% of its speed due to energy absorbed by the ball on impact. Where does the ball strike
the floor on the second bounce?

A cable has radius r and length L and is wound around a spool with radius R without overlapping.
What is the shortest length along the spool that is covered by the cable?
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’ ‘ ANSWERS

- 19m
.G x+1)/(—200=(—o)fc>—1)=0c—=0o)/(c*+1) B x>*+y*=t>+1,z=1t (c) 47/3
7. (3) v= wR(—sin wti + cos wtj) (c) a = —w’r

9. (a) 90°0i/(29)  11. (b) R() = (m/k)(1 — e """ )vo + (gm/R)(m/k)(1 — e ") — 1]
13. (¢) —2¢'vs+ e 'R

15. (a) =0.94 ft to the right of the table’s edge, =15 ft/s
(b) =7.6° (c) =2.13 ft to the right of the table’s edge
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‘ SOLUTIONS

[E] Exercises

1. Since three-dimensional situations are often difficult to visualize and work with, let
us first try to find an analogous problem in two dimensions. The analogue of a cube Vo r
is a square and the analogue of a sphere is a circle. Thus a similar problem in two
dimensions is the following: if five circles with the same radius r are contained in a 7

square of side 1 m so that the circles touch each other and four of the circles touch

r = =
4423 2

: ~ , t—c)(—2
(b) If we set z = t in the symmetric equations and solve for = and y separately, we get x + 1 = w

two sides of the square, find 7.

The diagonal of the square is /2. The diagonal is also 47 + 2z. But x is the diagonal of a smaller square of side 7.

Therefore x = V2r = \/§:4r+2x:4r+2\/§r:(4+2\/§)r = r= V2

2
4422

Let us use these ideas to solve the original three-dimensional problem. The diagonal of the cube is
V12 12 412 = /3. The diagonal of the cube is also 47 + 22 where x is the diagonal of a smaller cube with

edge r. Thereforex = 2+ 12 +12 =3r = V3=4r+2z=4r+23r = (4+2+/3)r. Thus

V3 2v3-3

. The radius of each ball is (v/3 — 2) m.

3. (a) We find the line of intersection L as in Example 10.5.6(b). Observe that the point (—1, ¢, ¢) lies on both planes.

Now since L lies in both planes, it is perpendicular to both of the normal vectors n; and n2, and thus parallel to
their
i k
cross productn; X nz = | ¢ 1| =(2c,—c* +1,—c* — 1). So symmetric equations of L can be written
1 —c ¢
z+1 y—c z—c

= , provided that ¢ # 0, £1.

as —2¢c  2—-1 ¢2+1

If ¢ = 0, then the two planes are given by y + z = 0 and x = —1, so symmetric equations of L are x = —1,
y = —=z. If ¢ = —1, then the two planes are given by —x +y + 2 = —1 and  + y + z = —1, and they intersect
inthe linexz = 0, y = —z — 1. If ¢ = 1, then the two planes are givenbyx +y+z=1landz —y+ z =1, and
they intersectin the liney =0,z =1 — z.

2+1
_C_(t—c)(cz—l) N m—_20t+(02_1) :(02—1)t+20

211 o R o . Eliminating c from these

equations, we have 2 4+ ¢ = t? 4 1. So the curve traced out by L in the plane z = ¢ is a circle with center at

0,0, t) and radius vt2 + 1.
(0,0,1) %

(c) The area of a horizontal cross-section of the solid is A(z) = 7(2* + 1), so

V= f01 A(z)dz =32 + z]é =1



Thomson Brooks-Cole copyright 2007

5. (a) When 0 = 6, the block is not moving, so the sum of the forces on the

block must be 0, thus N 4+ F + W = 0. This relationship is

illustrated geometrically in the figure. Since the vectors form a right w
. F
triangle, we have tan(6,) = ﬁ = ,u:ln = p,.

(b) We place the block at the origin and sketch the force vectors acting on the block, including the additional

CHALLENGE PROBLEMS

horizontal force H, with initial points at the origin. We then rotate this system so that F' lies along the positive

x-axis and the inclined plane is parallel to the x-axis.

\ N
F
0 . F
H 0
w
W ke

|F| is maximal, so |F| = p,n for @ > 6. Then the vectors, in terms of components parallel and perpendicular to

the inclined plane, are
N=nj F = (p,n)i
W = (—mgsinf)i+ (—mgcos)j
H = (hmin c080) i+ (—hminsinf) j
Equating components, we have
tyn —mgsing + hmincosd =0 = hyincosf + p,n =mgsind
n—mgcost —hminsind =0 = hminsinf +mgcosd =n
(c) Since (2) is solved for n, we substitute into (1):
hmin €080 4 11, (Amin sin @ + mg cos§) =mgsinf =

Pmin €08 0 + hminpt, sin@ = mgsind — mgu, cosd =

b —m sinf — p, cosd —m tanf — p
min = 1109 cos@+p, sinf ) g 14 p, tanf

tan @ — tan 6,

From part (a) we know p, = tan 65, so this becomes hmin = mg (m
an 0, tan

identity, this is mg tan(0 — 0,) as desired.

Note for = 05, hmin = mgtan 0 = 0, which makes sense since the block is at rest for 85, thus no

(M
@

) and using a trigonometric

additional force H is necessary to prevent it from moving. As 6 increases, the factor tan(6 — 6), and hence the

value of hmin, increases slowly for small values of § — 65 but much more rapidly as 6 — 65 becomes significant.

This seems reasonable, as the steeper the inclined plane, the less the horizontal components of the various forces
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affect the movement of the block, so we would need a much larger magnitude of horizontal force to keep the
block motionless. If we allow 8 — 90 °, corresponding to the inclined plane being placed vertically, the value of
hmin is quite large; this is to be expected, as it takes a great amount of horizontal force to keep an object from
moving vertically. In fact, without friction (so 8s = 0), we would have 8 — 90° = Amin — 00, and it
would be impossible to keep the block from slipping.

(d) Since hmax is the largest value of h that keeps the block from slipping, the force of friction is keeping the block
from moving up the inclined plane; thus, F is directed down the plane. Our system of forces is similar to that in
part (b), then, except that we have F = —(u,n) i. (Note that |F| is again maximal.) Following our procedure in
parts (b) and (c), we equate components:

—p,n —mgsing + hpaxcosd =0 = hmaxcosf — pn = mgsinf
n—mgcos — hmaxsin0 =0 = hpaxsinfd + mgcosf =n

Then substituting,

hmax €080 — i, (hmax sin@ + mgcosf) =mgsinf =

Rmax €08 0 — hmax i sinf = mgsin @ + mgp, cosfd =

sinf + p, cosf tanf +
hmax =mg| ————— | =mg| ——————=
cosf — p,sinf 1—p,tand

( tan 6 + tan 65

1 —tan6, tan@) = mgtan( +0;)

We would expect hmax to increase as 6 increases, with similar behavior as we established for Amin, but with
hmax values always larger than hpyin. We can see that this is the case if we graph hmax as a function of 4, as the
curve is the graph of hmin translated 26, to the left, so the equation does seem reasonable. Notice that the
equation predicts Amax — 00 as @ — (90° — 6,). In fact, as hmax increases, the normal force increases as
well. When (90° — 6,) < 6 < 90 °, the horizontal force is completely counteracted by the sum of the normal
and frictional forces, so no part of the horizontal force contributes to moving the block up the plane no matter

how large its magnitude.

7. (@ r(t) = Rcoswti+ Rsinwtj = v=r'(t)=—wRsinwti+wRcoswtj,sor = R(coswti+ sinwtj)

and v = wR(—sinwti+ coswtj). v-r = wR?(— coswtsinwt + sinwtcoswt) = 0,s0 v L r. Since r
points along a radius of the circle, and v L r, v is tangent to the circle. Because it is a velocity vector, v points
in the direction of motion.

(b) In (a), we wrote v in the form w R u, where u is the unit vector — sin wt i + coswt j. Clearly

|v| = wR |u| = wR. At speed wR, the particle completes one revolution, a distance 27 R, in time

2rR 27w
T=—=—.
wR w
d . .
©a= d_;’ = —w?Rcoswti— w?Rsinwtj = —w?R(coswt i+ sinwt j), so a = —w?r. This shows that a is

proportional to r and points in the opposite direction (toward the origin). Also, |a] = w? |r| = w?R.

2 2
(d) By Newton’s Second Law (see Section 10.9), F = ma, so |[F| = m|a] = mRw? = m (UIJ%R) = mg' .
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9. (a) The projectile reaches maximum height when 0 = % = % [(vo sin @)t — 1gt?] = vo sina — gt; that is, when
Vg sin o Vo Sin o 1 Vo Sin o 2 v% sin? a L . .
t= Y and y = (vo sin ) ; — 39 7 = Ty This is the maximum height

attained when the projectile is fired with an angle of elevation «. This maximum height is largest when o = 7.

2
In that case, sin @ = 1 and the maximum height is ;—0.
g

(b) Let R = v? / g. We are asked to consider the parabola 2> + 2Ry — R? = 0 which can be rewritten as

1

Y="5% %+ § The points on or inside this parabola are those for which —R < x < R and

0<y< ;—]}2 z? + § When the projectile is fired at angle of elevation «, the points (z, y) along its path

satisfy the relations z = (vo cos &) t and y = (vo sin )t — 2 gt*, where 0 < t < (2vgsina)/g (as in

2

. 2
Example 10.9.5). Thus |z| < |vg cos a (w)‘ =% sin2a’ < LY | R|. This shows that
g g
—R<zx<R.
For ¢ in the specified range, we also have y = ¢(vo sina — 3gt) = %gt(zv(}% - t) > 0 and
T g T 2 g 1
= i -z =(t - 2= _ 24t )
y = (vosina) vocosa 2 (Uo cosa) (tana)z 202 costa 2Rcos?ar + (tana)z
Thus
-1 5 R -1 2 1 R
_ = e il t _
Y (2Rx * 2) JRoosa ® Top" T(tana)r—3
2 2 2 2
x 1 R z°(1 —sec’a)+2R(tana)z — R
=2 _(1- t L
ZR( cosza) +(tana)z 2 2R
_ —(tan’ @) 2?4+ 2R (tana)z — R?  —|[(tana)z — R]’ <0

2R 2R

We have shown that every target that can be hit by the projectile lies on or inside the parabola
1

R 1 R
_ 2 . . . _ 2
Y=-3g% + 5 Now let (a, b) be any point on or inside the parabola y = 3R + 5 Then

—R<a<Rand0<b< —%% a® + g We seek an angle « such that (a, b) lies in the path of the projectile;

. . 1 5
that is, we wish to find an angle o such that b = " ReoZa” + (tana) a or

. —1 . . .
equivalently b = — (tan? o 4 1)a® + (tan «) a. Rearranging this equation we get

2R

2 2
;—R tan® o — atan o + (;TQ + b) = 0ora?(tana)? — 2aR(tan ) + (a® + 2bR) = 0 (*) . This quadratic

equation for tan « has real solutions exactly when the discriminant is nonnegative. Now B2 — 4AC >0 <

(—2aR)* —4a*(a® +20R) >0 < 4a*(R*—a®> -20R) >0 < —a*—-20R+R*>0 &

b< %% (R?—d%) & b< 2_—; a®+ % This condition is satisfied since (a, b) is on or inside the parabola
1

y=-3x 2+ ]_; It follows that (a, b) lies in the path of the projectile when tan « satisfies (x), that is, when

_ 2aR+\/4a*>(R?> —a? —2bR) R+ +/R? —2bR — a2
o 2a? - ’

tan o
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(c) If the gun is pointed at a target with height h at a distance D downrange,
then tan o = h/D. When the projectile reaches a distance D downrange
h
(remember we are assuming that it doesn’t hit the ground first), we have
a
D D =z=(vocosa)t,sot = and
Vp COS (¢
gD?
y = (vosina)t — % gt? = Dtana — 55— Meanwhile, the target, whose z-coordinate is also D, has
2v§ cos? «
gD?
fallen from height h to height h — % gt? = Dtana — 55 5 - Thus the projectile hits the target.
2v§ cos? a
d°R dR d dR dR
1. — =-mgj—k— = — — +kR tj] =0 = — + kR tj=
(@) m dt? mgl dt dt (m dt + tmg ‘]) ™ + tmgty=c
(c is a constant vector in the xy-plane). At ¢ = 0, this says that m v(0) + k£ R(0) = c. Since v(0) = v and
k

R(0) = 0, we have ¢ = mvyg. Therefore % + % R + gtj = vo,or drR +

R =vo—gtj.
dt m vo— gt

(b) Multiplying by e(®/"™)* gives e(F/m)* % + ﬁe(k/m)t R = ®/™tyy — gte®/™t j or
m

% (e®/mtR) = /Mty — gte/™ j Integrating gives

2
B/ mt R — % e(k/m)t o {% tek/m)t _ % e(k/m)t] j + b for some constant vector b.

2 2
Setting ¢ = 0 yields the relation R(0) = % vo + %j +b,sob = —% vo — 77};9 j- Thus

2
ok/mt R — % [e(k/m)t _ 1} Vo — {%te(k/m)t _ % (e(k/m)t B 1)} jand
R(t) = T [1— e/ | vo + 2L [ (1 —e7H/m) —1] .

13. (a) Instead of proceeding directly, we use Formula 3 of Theorem 10.7.5:
rt) =tR(t) = v=r'(t)=R(t)+tR'(t) = coswti+sinwtj+tva.
(b) Using the same method as in part (a) and starting with v = R(¢) + t R’ (t), we have
a=v =R't)+R'(t) +tR"(t) =2R'(t) +tR"(t) =2vq + taa.
(c) Here we have r(t) = e *coswti+ e ‘sinwtj = e *R(t). So, as in parts (a) and (b),
v=r(t)=e 'R/(t) —e 'R(t) = e ‘[R'(t) - R(t)] =
a=v' =e'[R"(t) - R'(t)] — e "[R'(t) - R(t)] = e '[R"(t) - 2R'(t) + R(t)]

=eltag—2 tvi+e 'R

Thus, the Coriolis acceleration (the sum of the “extra” terms not involving a) is —2¢tvg+etR.

15. @a=—gj = v=vo—gtj=2i—gtj = s=so+2ti—1gt’j=35j+2ti—1gt’j =
s=2ti+ (3.5 - %gtz) j- Therefore y = 0 when ¢ = /7/g seconds. At that instant, the ball is
24/7/g =~ 0.94 ft to the right of the table top. Its coordinates (relative to an origin on the floor directly under the

table’s edge) are (0.94, 0). At impact, the velocity is v = 21 — 1/7g j, so the speed is |[v| = \/4 + Tg ~ 15 ft/s.
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_ [T..dy _dy/dt  —gt —9\/T/9g —Tg _ Vg
(b) The slope of the curve when t = \/;1s de " dwfdi T 2 > =—3 . Thus cot § = 5

and 6 ~ 7.6°.
(c) From (a), |v| = 4/4 + 7g. So the ball rebounds with speed 0.8 /4 + 7g ~ 12.08 ft/s at angle of inclination

Ve sin 2
g
where vo &~ 12.08 ft/s and o = 82.3886 °. Therefore, d ~ 1.197 ft. So the ball strikes the floor at about

90° — 6 ~ 82.3886 °. By Example 10.9.5, the horizontal distance traveled between bounces is d =

b}

24/7/g + 1.197 =~ 2.13 ft to the right of the table’s edge.





