Approximate Integration: Trapezoid Rule and Simpson's Rule

1

There are two situations in which it is impossible to find the exact value of a definite integral.

The first situation arises from the fact that in order to evaluate $\int_{a}^{b} f(x) dx$ using the Fundamental Theorem of Calculus we need to know an antiderivative of *f*. Sometimes, however, it is difficult, or even impossible, to find an antiderivative (see Section 5.7). For example, it is impossible to evaluate the following integrals exactly:

$$\int_0^1 e^{x^2} dx \qquad \int_{-1}^1 \sqrt{1 + x^3} \, dx$$

The second situation arises when the function is determined from a scientific experiment through instrument readings or collected data. There may be no formula for the function (see Example 5).

In both cases we need to find approximate values of definite integrals. We already know one such method. Recall that the definite integral is defined as a limit of Riemann sums, so any Riemann sum could be used as an approximation to the integral: If we divide [a, b] into n subintervals of equal length $\Delta x = (b - a)/n$, then we have

$$\int_{a}^{b} f(x) \, dx \approx \sum_{i=1}^{n} f(x_{i}^{*}) \, \Delta x$$

where x_i^* is any point in the *i*th subinterval $[x_{i-1}, x_i]$. If x_i^* is chosen to be the left endpoint of the interval, then $x_i^* = x_{i-1}$ and we have

$$\int_a^b f(x) \, dx \approx L_n = \sum_{i=1}^n f(x_{i-1}) \, \Delta x$$

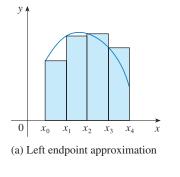
If $f(x) \ge 0$, then the integral represents an area and (1) represents an approximation of this area by the rectangles shown in Figure 1(a). If we choose x_i^* to be the right endpoint, then $x_i^* = x_i$ and we have

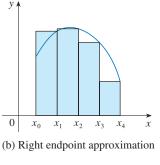
$$\int_{a}^{b} f(x) \, dx \approx R_{n} = \sum_{i=1}^{n} f(x_{i}) \, \Delta x$$

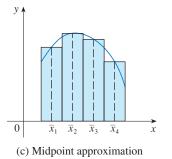
[See Figure 1(b).] The approximations L_n and R_n defined by Equations 1 and 2 are called the **left endpoint approximation** and **right endpoint approximation**, respectively.

We have also considered the case where x_i^* is chosen to be the midpoint \overline{x}_i of the subinterval $[x_{i-1}, x_i]$. Figure 1(c) shows the midpoint approximation M_n , which appears to be better than either L_n or R_n .

Midpoint Rule $\int_{a}^{b} f(x) dx \approx M_{n} = \Delta x \left[f(\overline{x}_{1}) + f(\overline{x}_{2}) + \dots + f(\overline{x}_{n}) \right]$ where $\Delta x = \frac{b-a}{n}$ and $\overline{x}_{i} = \frac{1}{2}(x_{i-1} + x_{i}) = \text{midpoint of } [x_{i-1}, x_{i}]$







Another approximation, called the Trapezoidal Rule, results from averaging the approximations in Equations 1 and 2:

$$\int_{a}^{b} f(x) dx \approx \frac{1}{2} \left[\sum_{i=1}^{n} f(x_{i-1}) \Delta x + \sum_{i=1}^{n} f(x_{i}) \Delta x \right] = \frac{\Delta x}{2} \left[\sum_{i=1}^{n} \left(f(x_{i-1}) + f(x_{i}) \right) \right]$$
$$= \frac{\Delta x}{2} \left[\left(f(x_{0}) + f(x_{1}) \right) + \left(f(x_{1}) + f(x_{2}) \right) + \dots + \left(f(x_{n-1}) + f(x_{n}) \right) \right]$$
$$= \frac{\Delta x}{2} \left[f(x_{0}) + 2f(x_{1}) + 2f(x_{2}) + \dots + 2f(x_{n-1}) + f(x_{n}) \right]$$

Trapezoidal Rule

$$\int_{a}^{b} f(x) dx \approx T_{n} = \frac{\Delta x}{2} [f(x_{0}) + 2f(x_{1}) + 2f(x_{2}) + \dots + 2f(x_{n-1}) + f(x_{n})]$$

where $\Delta x = (b - a)/n$ and $x_i = a + i \Delta x$.

The reason for the name Trapezoidal Rule can be seen from Figure 2, which illustrates the case with $f(x) \ge 0$ and n = 4. The area of the trapezoid that lies above the *i*th sub-interval is

$$\Delta x \left(\frac{f(x_{i-1}) + f(x_i)}{2} \right) = \frac{\Delta x}{2} \left[f(x_{i-1}) + f(x_i) \right]$$

and if we add the areas of all these trapezoids, we get the right side of the Trapezoidal Rule.

EXAMPLE 1 Use (a) the Trapezoidal Rule and (b) the Midpoint Rule with n = 5 to approximate the integral $\int_{1}^{2} (1/x) dx$.

SOLUTION

(a) With n = 5, a = 1, and b = 2, we have $\Delta x = (2 - 1)/5 = 0.2$, and so the Trapezoidal Rule gives

$$\int_{1}^{2} \frac{1}{x} dx \approx T_{5} = \frac{0.2}{2} \left[f(1) + 2f(1.2) + 2f(1.4) + 2f(1.6) + 2f(1.8) + f(2) \right]$$
$$= 0.1 \left(\frac{1}{1} + \frac{2}{1.2} + \frac{2}{1.4} + \frac{2}{1.6} + \frac{2}{1.8} + \frac{1}{2} \right)$$

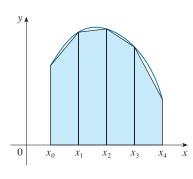
 ≈ 0.695635

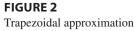
This approximation is illustrated in Figure 3.

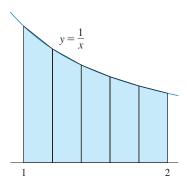
(b) The midpoints of the five subintervals are 1.1, 1.3, 1.5, 1.7, and 1.9, so the Midpoint Rule gives

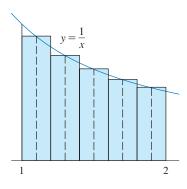
$$\int_{1}^{2} \frac{1}{x} dx \approx \Delta x \left[f(1.1) + f(1.3) + f(1.5) + f(1.7) + f(1.9) \right]$$
$$= \frac{1}{5} \left(\frac{1}{1.1} + \frac{1}{1.3} + \frac{1}{1.5} + \frac{1}{1.7} + \frac{1}{1.9} \right)$$
$$\approx 0.691908$$

This approximation is illustrated in Figure 4.









© 2016 Cengage Learning. All Rights Reserved. This content is not yet final and Cengage Learning does not guarantee this page will contain current material or match the published product.

FIGURE 3

In Example 1 we deliberately chose an integral whose value can be computed explicitly so that we can see how accurate the Trapezoidal and Midpoint Rules are. By the Fundamental Theorem of Calculus,

$$\int_{1}^{2} \frac{1}{x} dx = \ln x \Big]_{1}^{2} = \ln 2 = 0.693147..$$

 $\int_{a}^{b} f(x) dx =$ approximation + error

The **error** in using an approximation is defined to be the amount that needs to be added to the approximation to make it exact. From the values in Example 1 we see that the errors in the Trapezoidal and Midpoint Rule approximations for n = 5 are

 $E_T \approx -0.002488$ and $E_M \approx 0.001239$

In general, we have

$$E_T = \int_a^b f(x) \, dx - T_n$$
 and $E_M = \int_a^b f(x) \, dx - M_n$

The following tables show the results of calculations similar to those in Example 1, but for n = 5, 10, and 20 and for the left and right endpoint approximations as well as the Trapezoidal and Midpoint Rules.

п	L_n	R_n	T_n	M_n
5	0.745635	0.645635	0.695635	0.691908
10	0.718771	0.668771	0.693771	0.692835
20	0.705803	0.680803	0.693303	0.693069

п	E_L	E_R	E_T	E_M
5	-0.052488	0.047512	-0.002488	0.001239
10	-0.025624	0.024376	-0.000624	0.000312
20	-0.012656	0.012344	-0.000156	0.000078

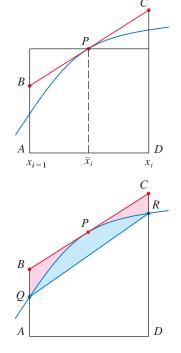
We can make several observations from these tables:

- 1. In all of the methods we get more accurate approximations when we increase the value of *n*. (But very large values of *n* result in so many arithmetic operations that we have to beware of accumulated round-off error.)
- **2.** The errors in the left and right endpoint approximations are opposite in sign and appear to decrease by a factor of about 2 when we double the value of *n*.
- **3.** The Trapezoidal and Midpoint Rules are much more accurate than the endpoint approximations.
- **4.** The errors in the Trapezoidal and Midpoint Rules are opposite in sign and appear to decrease by a factor of about 4 when we double the value of *n*.
- **5.** The size of the error in the Midpoint Rule is about half the size of the error in the Trapezoidal Rule.

Figure 5 shows why we can usually expect the Midpoint Rule to be more accurate than the Trapezoidal Rule. The area of a typical rectangle in the Midpoint Rule is the same as the area of the trapezoid *ABCD* whose upper side is tangent to the graph at *P*. The area of this trapezoid is closer to the area under the graph than is the area of the trapezoid *AQRD* used in the Trapezoidal Rule. [The midpoint error (shaded red) is smaller than the trapezoidal error (shaded blue).]

Approximations to $\int_{1}^{2} \frac{1}{x} dx$

It turns out that these observations are true in most cases.



These observations are corroborated in the following error estimates, which are proved in books on numerical analysis. Notice that Observation 4 corresponds to the n^2 in each denominator because $(2n)^2 = 4n^2$. The fact that the estimates depend on the size of the second derivative is not surprising if you look at Figure 5, because f''(x) measures how much the graph is curved. [Recall that f''(x) measures how fast the slope of y = f(x) changes.]

3 Error Bounds Suppose $|f''(x)| \le K$ for $a \le x \le b$. If E_T and E_M are the errors in the Trapezoidal and Midpoint Rules, then

$$|E_T| \leq \frac{K(b-a)^3}{12n^2}$$
 and $|E_M| \leq \frac{K(b-a)^3}{24n^2}$

Let's apply this error estimate to the Trapezoidal Rule approximation in Example 1. If f(x) = 1/x, then $f'(x) = -1/x^2$ and $f''(x) = 2/x^3$. Because $1 \le x \le 2$, we have $1/x \le 1$, so

$$|f''(x)| = \left|\frac{2}{x^3}\right| \le \frac{2}{1^3} = 2$$

Therefore, taking K = 2, a = 1, b = 2, and n = 5 in the error estimate (3), we see that

K can be any number larger than all the values of |f''(x)|, but smaller values of *K* give better error bounds.

$$|E_T| \le \frac{2(2-1)^3}{12(5)^2} = \frac{1}{150} \approx 0.006667$$

Comparing this error estimate of 0.006667 with the actual error of about 0.002488, we see that it can happen that the actual error is substantially less than the upper bound for the error given by (3).

EXAMPLE 2 How large should we take *n* in order to guarantee that the Trapezoidal and Midpoint Rule approximations for $\int_{1}^{2} (1/x) dx$ are accurate to within 0.0001?

SOLUTION We saw in the preceding calculation that $|f''(x)| \le 2$ for $1 \le x \le 2$, so we can take K = 2, a = 1, and b = 2 in (3). Accuracy to within 0.0001 means that the size of the error should be less than 0.0001. Therefore we choose *n* so that

$$\frac{2(1)^3}{12n^2} < 0.0001$$

Solving the inequality for *n*, we get

or

$$n^2 > \frac{2}{12(0.0001)}$$

It's quite possible that a lower value for *n* would suffice, but 41 is the smallest value for which the error bound formula can *guarantee* us accuracy to within 0.0001.

$$n > \frac{1}{\sqrt{0.0006}} \approx 40.8$$

Thus n = 41 will ensure the desired accuracy. For the same accuracy with the Midpoint Rule we choose *n* so that

$$\frac{2(1)^3}{24n^2} < 0.0001 \qquad \text{and so} \qquad n > \frac{1}{\sqrt{0.0012}} \approx 29$$

EXAMPLE 3

- (a) Use the Midpoint Rule with n = 10 to approximate the integral $\int_{0}^{1} e^{x^{2}} dx$.
- (b) Give an upper bound for the error involved in this approximation.

SOLUTION

(a) Since a = 0, b = 1, and n = 10, the Midpoint Rule gives

$$\int_0^1 e^{x^2} dx \approx \Delta x \left[f(0.05) + f(0.15) + \dots + f(0.85) + f(0.95) \right]$$

= $0.1 \left[e^{0.0025} + e^{0.0225} + e^{0.0625} + e^{0.1225} + e^{0.2025} + e^{0.3025} + e^{0.4225} + e^{0.5625} + e^{0.7225} + e^{0.9025} \right]$

 ≈ 1.460393

Figure 6 illustrates this approximation.

(b) Since $f(x) = e^{x^2}$, we have $f'(x) = 2xe^{x^2}$ and $f''(x) = (2 + 4x^2)e^{x^2}$. Also, since $0 \le x \le 1$, we have $x^2 \le 1$ and so

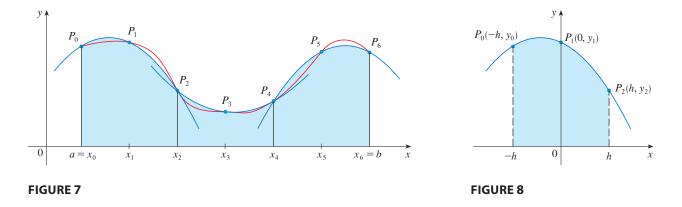
$$0 \le f''(x) = (2 + 4x^2)e^{x^2} \le 6e$$

Taking K = 6e, a = 0, b = 1, and n = 10 in the error estimate (3), we see that an upper bound for the error is

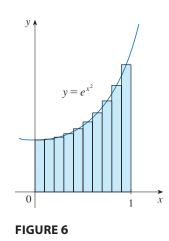
$$\frac{6e(1)^3}{24(10)^2} = \frac{e}{400} \approx 0.007$$

Simpson's Rule

Another rule for approximate integration results from using parabolas instead of straight line segments to approximate a curve. As before, we divide [a, b] into n subintervals of equal length $h = \Delta x = (b - a)/n$, but this time we assume that n is an *even* number. Then on each consecutive pair of intervals we approximate the curve $y = f(x) \ge 0$ by a parabola as shown in Figure 7. If $y_i = f(x_i)$, then $P_i(x_i, y_i)$ is the point on the curve lying above x_i . A typical parabola passes through three consecutive points P_i, P_{i+1} , and P_{i+2} .



To simplify our calculations, we first consider the case where $x_0 = -h$, $x_1 = 0$, and $x_2 = h$. (See Figure 8.) We know that the equation of the parabola through P_0 , P_1 , and P_2 is of the form $y = Ax^2 + Bx + C$ and so the area under the parabola from x = -h



Error estimates give upper bounds for the error. They are theoretical, worst-

case scenarios. The actual error in this case turns out to be about 0.0023.

to x = h is

Here we have used Theorem 5.4.6. Notice that $Ax^2 + C$ is even and *Bx* is odd.

$$\int_{-h}^{h} (Ax^{2} + Bx + C) dx = 2 \int_{0}^{h} (Ax^{2} + C) dx = 2 \left[A \frac{x^{3}}{3} + Cx \right]_{0}^{h}$$
$$= 2 \left(A \frac{h^{3}}{3} + Ch \right) = \frac{h}{3} (2Ah^{2} + 6C)$$

But, since the parabola passes through $P_0(-h, y_0)$, $P_1(0, y_1)$, and $P_2(h, y_2)$, we have

$$y_0 = A(-h)^2 + B(-h) + C = Ah^2 - Bh + C$$
$$y_1 = C$$
$$y_2 = Ah^2 + Bh + C$$

and therefore

$$y_0 + 4y_1 + y_2 = 2Ah^2 + 6C$$

Thus we can rewrite the area under the parabola as

$$\frac{h}{3}(y_0+4y_1+y_2)$$

Now by shifting this parabola horizontally we do not change the area under it. This means that the area under the parabola through P_0 , P_1 , and P_2 from $x = x_0$ to $x = x_2$ in Figure 7 is still

$$\frac{h}{3}(y_0+4y_1+y_2)$$

Similarly, the area under the parabola through P_2 , P_3 , and P_4 from $x = x_2$ to $x = x_4$ is

$$\frac{h}{3}(y_2+4y_3+y_4)$$

If we compute the areas under all the parabolas in this manner and add the results, we get

$$\int_{a}^{b} f(x) dx \approx \frac{h}{3} (y_{0} + 4y_{1} + y_{2}) + \frac{h}{3} (y_{2} + 4y_{3} + y_{4}) + \dots + \frac{h}{3} (y_{n-2} + 4y_{n-1} + y_{n})$$
$$= \frac{h}{3} (y_{0} + 4y_{1} + 2y_{2} + 4y_{3} + 2y_{4} + \dots + 2y_{n-2} + 4y_{n-1} + y_{n})$$

Although we have derived this approximation for the case in which $f(x) \ge 0$, it is a reasonable approximation for any continuous function f and is called Simpson's Rule after the English mathematician Thomas Simpson (1710–1761). Note the pattern of coefficients: 1, 4, 2, 4, 2, 4, 2, ..., 4, 2, 4, 1.

Simpson's Rule

$$\int_{a}^{b} f(x) dx \approx S_{n} = \frac{\Delta x}{3} [f(x_{0}) + 4f(x_{1}) + 2f(x_{2}) + 4f(x_{3}) + \dots + 2f(x_{n-2}) + 4f(x_{n-1}) + f(x_{n})]$$

where *n* is even and $\Delta x = (b - a)/n$.

Simpson

Thomas Simpson was a weaver who taught himself mathematics and went on to become one of the best English mathematicians of the 18th century. What we call Simpson's Rule was actually known to Cavalieri and Gregory in the 17th century, but Simpson popularized it in his book Mathematical Dissertations (1743). **EXAMPLE 4** Use Simpson's Rule with n = 10 to approximate $\int_{1}^{2} (1/x) dx$.

SOLUTION Putting f(x) = 1/x, n = 10, and $\Delta x = 0.1$ in Simpson's Rule, we obtain

$$\sum_{1}^{2} \frac{1}{x} dx \approx S_{10}$$

$$= \frac{\Delta x}{3} [f(1) + 4f(1.1) + 2f(1.2) + 4f(1.3) + \dots + 2f(1.8) + 4f(1.9) + f(2)]$$

$$= \frac{0.1}{3} \left(\frac{1}{1} + \frac{4}{1.1} + \frac{2}{1.2} + \frac{4}{1.3} + \frac{2}{1.4} + \frac{4}{1.5} + \frac{2}{1.6} + \frac{4}{1.7} + \frac{2}{1.8} + \frac{4}{1.9} + \frac{1}{2} \right)$$

$$\approx 0.693150$$

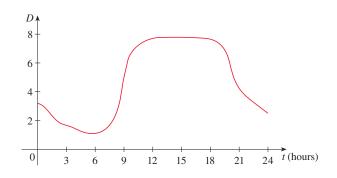
Notice that, in Example 4, Simpson's Rule gives us a *much* better approximation $(S_{10} \approx 0.693150)$ to the true value of the integral (ln 2 $\approx 0.693147...$) than does the Trapezoidal Rule ($T_{10} \approx 0.693771$) or the Midpoint Rule ($M_{10} \approx 0.692835$). It turns out (see Exercise 50) that the approximations in Simpson's Rule are weighted averages of those in the Trapezoidal and Midpoint Rules:

$$S_{2n} = \frac{1}{3}T_n + \frac{2}{3}M_n$$

(Recall that E_T and E_M usually have opposite signs and $|E_M|$ is about half the size of $|E_T|$.)

In many applications of calculus we need to evaluate an integral even if no explicit formula is known for y as a function of x. A function may be given graphically or as a table of values of collected data. If there is evidence that the values are not changing rapidly, then the Trapezoidal Rule or Simpson's Rule can still be used to find an approximate value for $\int_a^b y \, dx$, the integral of y with respect to x.

EXAMPLE 5 Figure 9 shows data traffic on the link from the United States to SWITCH, the Swiss academic and research network, on February 10, 1998. D(t) is the data throughput, measured in megabits per second (Mb/s). Use Simpson's Rule to estimate the total amount of data transmitted on the link from midnight to noon on that day.



SOLUTION Because we want the units to be consistent and D(t) is measured in megabits per second, we convert the units for *t* from hours to seconds. If we let A(t) be the amount of data (in megabits) transmitted by time *t*, where *t* is measured in seconds, then A'(t) = D(t). So, by the Net Change Theorem (see Section 5.4), the total amount

of data transmitted by noon (when $t = 12 \times 60^2 = 43,200$) is

$$A(43,200) = \int_0^{43,200} D(t) \, dt$$

We estimate the values of D(t) at hourly intervals from the graph and compile them in the table.

t (hours)	t (seconds)	D(t)	t (hours)	t (seconds)	D(t)
0	0	3.2	7	25,200	1.3
1	3,600	2.7	8	28,800	2.8
2	7,200	1.9	9	32,400	5.7
3	10,800	1.7	10	36,000	7.1
4	14,400	1.3	11	39,600	7.7
5	18,000	1.0	12	43,200	7.9
6	21,600	1.1			

Then we use Simpson's Rule with n = 12 and $\Delta t = 3600$ to estimate the integral:

$$\int_{0}^{43,200} A(t) dt \approx \frac{\Delta t}{3} \left[D(0) + 4D(3600) + 2D(7200) + \dots + 4D(39,600) + D(43,200) \right]$$
$$\approx \frac{3600}{3} \left[3.2 + 4(2.7) + 2(1.9) + 4(1.7) + 2(1.3) + 4(1.0) + 2(1.1) + 4(1.3) + 2(2.8) + 4(5.7) + 2(7.1) + 4(7.7) + 7.9 \right]$$
$$= 143,880$$

Thus the total amount of data transmitted from midnight to noon is about 144,000 megabits, or 144 gigabits.

п	M_n	S_n
4	0.69121989	0.69315453
8	0.69266055	0.69314765
16	0.69302521	0.69314721

п	E_M	E_S
4	0.00192729	-0.00000735
8	0.00048663	-0.00000047
16	0.00012197	-0.0000003

The table in the margin shows how Simpson's Rule compares with the Midpoint Rule for the integral $\int_{1}^{2} (1/x) dx$, whose value is about 0.69314718. The second table shows how the error E_s in Simpson's Rule decreases by a factor of about 16 when *n* is doubled. (In Exercises 27 and 28 you are asked to verify this for two additional integrals.) That is consistent with the appearance of n^4 in the denominator of the following error estimate for Simpson's Rule. It is similar to the estimates given in (3) for the Trapezoidal and Midpoint Rules, but it uses the fourth derivative of *f*.

4 Error Bound for Simpson's Rule Suppose that $|f^{(4)}(x)| \le K$ for $a \le x \le b$. If E_s is the error involved in using Simpson's Rule, then

$$|E_S| \leq \frac{K(b-a)^5}{180n^4}$$

EXAMPLE 6 How large should we take *n* in order to guarantee that the Simpson's Rule approximation for $\int_{1}^{2} (1/x) dx$ is accurate to within 0.0001?

SOLUTION If f(x) = 1/x, then $f^{(4)}(x) = 24/x^5$. Since $x \ge 1$, we have $1/x \le 1$ and so

$$\left|f^{(4)}(x)\right| = \left|\frac{24}{x^5}\right| \le 24$$

Therefore we can take K = 24 in (4). Thus, for an error less than 0.0001, we should choose *n* so that

 $n^4 > \frac{24}{180(0.0001)}$

$$\frac{24(1)^5}{180n^4} < 0.0001$$

This gives

or

$$n > \frac{1}{\sqrt[4]{0.00075}} \approx 6.04$$

Therefore n = 8 (*n* must be even) gives the desired accuracy. (Compare this with Example 2, where we obtained n = 41 for the Trapezoidal Rule and n = 29 for the Midpoint Rule.)

EXAMPLE 7

- (a) Use Simpson's Rule with n = 10 to approximate the integral $\int_{0}^{1} e^{x^{2}} dx$.
- (b) Estimate the error involved in this approximation.

SOLUTION

(a) If n = 10, then $\Delta x = 0.1$ and Simpson's Rule gives

$$\int_{0}^{1} e^{x^{2}} dx \approx \frac{\Delta x}{3} \left[f(0) + 4f(0.1) + 2f(0.2) + \dots + 2f(0.8) + 4f(0.9) + f(1) \right]$$
$$= \frac{0.1}{3} \left[e^{0} + 4e^{0.01} + 2e^{0.04} + 4e^{0.09} + 2e^{0.16} + 4e^{0.25} + 2e^{0.36} + 4e^{0.49} + 2e^{0.64} + 4e^{0.81} + e^{1} \right]$$

 ≈ 1.462681

(b) The fourth derivative of $f(x) = e^{x^2}$ is

$$f^{(4)}(x) = (12 + 48x^2 + 16x^4)e^{x^2}$$

and so, since $0 \le x \le 1$, we have

$$0 \le f^{(4)}(x) \le (12 + 48 + 16)e^1 = 76e$$

Therefore, putting K = 76e, a = 0, b = 1, and n = 10 in (4), we see that the error is at most

$$\frac{76e(1)^5}{180(10)^4} \approx 0.000115$$

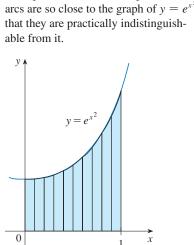
(Compare this with Example 3.) Thus, correct to three decimal places, we have

$$\int_0^1 e^{x^2} dx \approx 1.463$$

Figure 10 illustrates the calculation in Example 7. Notice that the parabolic *y* ,

 $y = e^{x^2}$

FIGURE 10



Many calculators and computer algebra

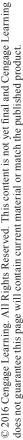
computes an approximation of a definite integral. Some of these machines use Simpson's Rule; others use more sophisticated techniques such as adaptive

numerical integration. This means that if

more subintervals. This strategy reduces the number of calculations required to achieve a prescribed accuracy.

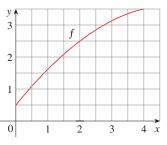
a function fluctuates much more on a certain part of the interval than it does elsewhere, then that part gets divided into

systems have a built-in algorithm that

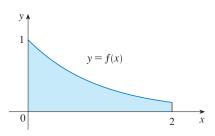


Exercises

- **1.** Let $I = \int_0^4 f(x) dx$, where f is the function whose graph is shown.
 - (a) Use the graph to find L_2 , R_2 , and M_2 .
 - (b) Are these underestimates or overestimates of *I*?
 - (c) Use the graph to find T_2 . How does it compare with I?
 - (d) For any value of n, list the numbers L_n, R_n, M_n, T_n, and I in increasing order.



- **2.** The left, right, Trapezoidal, and Midpoint Rule approximations were used to estimate $\int_0^2 f(x) dx$, where *f* is the function whose graph is shown. The estimates were 0.7811, 0.8675, 0.8632, and 0.9540, and the same number of sub-intervals were used in each case.
 - (a) Which rule produced which estimate?
 - (b) Between which two approximations does the true value of $\int_0^2 f(x) dx$ lie?



- A: Estimate ∫₀¹ cos(x²) dx using (a) the Trapezoidal Rule and (b) the Midpoint Rule, each with n = 4. From a graph of the integrand, decide whether your answers are underestimates or overestimates. What can you conclude about the true value of the integral?
- 4. Draw the graph of $f(x) = \sin(\frac{1}{2}x^2)$ in the viewing rectangle [0, 1] by [0, 0.5] and let $I = \int_0^1 f(x) dx$.
 - (a) Use the graph to decide whether L_2 , R_2 , M_2 , and T_2 underestimate or overestimate I.
 - (b) For any value of n, list the numbers L_n , R_n , M_n , T_n , and I in increasing order.
 - (c) Compute L₅, R₅, M₅, and T₅. From the graph, which do you think gives the best estimate of *I*?

5–6 Use (a) the Midpoint Rule and (b) Simpson's Rule to approximate the given integral with the specified value of n. (Round your answers to six decimal places.) Compare your results to the actual value to determine the error in each approximation.

5.
$$\int_0^2 \frac{x}{1+x^2} dx$$
, $n = 10$ **6.** $\int_0^{\pi} x \cos x \, dx$, $n = 4$

7–18 Use (a) the Trapezoidal Rule, (b) the Midpoint Rule, and (c) Simpson's Rule to approximate the given integral with the specified value of *n*. (Round your answers to six decimal places.)

7.
$$\int_{1}^{2} \sqrt{x^{3} - 1} \, dx, \quad n = 10$$
8.
$$\int_{0}^{2} \frac{1}{1 + x^{6}} \, dx, \quad n = 8$$
9.
$$\int_{0}^{2} \frac{e^{x}}{1 + x^{2}} \, dx, \quad n = 10$$
10.
$$\int_{0}^{\pi/2} \sqrt[3]{1 + \cos x} \, dx, \quad n = 4$$
11.
$$\int_{1}^{4} \sqrt{\ln x} \, dx, \quad n = 6$$
12.
$$\int_{0}^{1} \sin(x^{3}) \, dx, \quad n = 10$$
13.
$$\int_{0}^{4} e^{\sqrt{t}} \sin t \, dt, \quad n = 8$$
14.
$$\int_{0}^{1} \sqrt{z} e^{-z} \, dz, \quad n = 10$$
15.
$$\int_{1}^{5} \frac{\cos x}{x} \, dx, \quad n = 8$$
16.
$$\int_{4}^{6} \ln(x^{3} + 2) \, dx, \quad n = 10$$
17.
$$\int_{-1}^{1} e^{e^{x}} \, dx, \quad n = 10$$
18.
$$\int_{0}^{4} \cos \sqrt{x} \, dx, \quad n = 10$$

- **19.** (a) Find the approximations T_8 and M_8 for the integral $\int_0^1 \cos(x^2) dx$.
 - (b) Estimate the errors in the approximations of part (a).
 - (c) How large do we have to choose n so that the approximations T_n and M_n to the integral in part (a) are accurate to within 0.0001?
- **20.** (a) Find the approximations T_{10} and M_{10} for $\int_1^2 e^{1/x} dx$.
 - (b) Estimate the errors in the approximations of part (a).
 - (c) How large do we have to choose n so that the approximations T_n and M_n to the integral in part (a) are accurate to within 0.0001?
- **21.** (a) Find the approximations T_{10} , M_{10} , and S_{10} for $\int_0^{\pi} \sin x \, dx$ and the corresponding errors E_T , E_M , and E_S .
 - (b) Compare the actual errors in part (a) with the error estimates given by (3) and (4).
 - (c) How large do we have to choose n so that the approximations T_n , M_n , and S_n to the integral in part (a) are accurate to within 0.00001?
- **22.** How large should *n* be to guarantee that the Simpson's Rule approximation to $\int_0^1 e^{x^2} dx$ is accurate to within 0.00001?
- **23.** The trouble with the error estimates is that it is often very difficult to compute four derivatives and obtain a good upper bound *K* for $|f^{(4)}(x)|$ by hand. But computer algebra systems have no problem computing $f^{(4)}$ and graphing it, so we can easily find a value for *K* from a machine graph. This exercise deals with approximations to the integral $I = \int_{0}^{2\pi} f(x) dx$, where $f(x) = e^{\cos x}$.
 - (a) Use a graph to get a good upper bound for |f''(x)|.
 - (b) Use M_{10} to approximate I.

- (c) Use part (a) to estimate the error in part (b).
- (d) Use the built-in numerical integration capability of your CAS to approximate *I*.
- (e) How does the actual error compare with the error estimate in part (c)?
- (f) Use a graph to get a good upper bound for $|f^{(4)}(x)|$.
- (g) Use S_{10} to approximate I.
- (h) Use part (f) to estimate the error in part (g).
- (i) How does the actual error compare with the error estimate in part (h)?
- (j) How large should *n* be to guarantee that the size of the error in using S_n is less than 0.0001?

24. Repeat Exercise 23 for the integral $\int_{-1}^{1} \sqrt{4 - x^3} dx$.

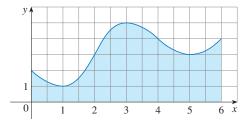
25–26 Find the approximations L_n , R_n , T_n , and M_n for n = 5, 10, and 20. Then compute the corresponding errors E_L , E_R , E_T , and E_M . (Round your answers to six decimal places. You may wish to use the sum command on a computer algebra system.) What observations can you make? In particular, what happens to the errors when *n* is doubled?

25.
$$\int_0^1 x e^x dx$$
 26. $\int_1^2 \frac{1}{x^2} dx$

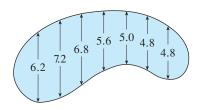
27–28 Find the approximations T_n , M_n , and S_n for n = 6 and 12. Then compute the corresponding errors E_T , E_M , and E_S . (Round your answers to six decimal places. You may wish to use the sum command on a computer algebra system.) What observations can you make? In particular, what happens to the errors when n is doubled?

27.
$$\int_0^2 x^4 dx$$
 28. $\int_1^4 \frac{1}{\sqrt{x}} dx$

29. Estimate the area under the graph in the figure by using (a) the Trapezoidal Rule, (b) the Midpoint Rule, and (c) Simpson's Rule, each with n = 6.



30. The widths (in meters) of a kidney-shaped swimming pool were measured at 2-meter intervals as indicated in the figure. Use Simpson's Rule to estimate the area of the pool.



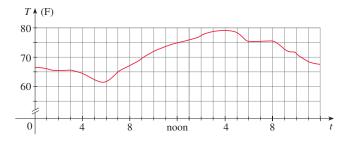
31. (a) Use the Midpoint Rule and the given data to estimate the value of the integral $\int_{1}^{5} f(x) dx$.

x	f(x)	x	f(x)
1.0	2.4	3.5	4.0
1.5	2.9	4.0	4.1
2.0	3.3	4.5	3.9
2.5	3.6	5.0	3.5
3.0	3.8		

- (b) If it is known that $-2 \le f''(x) \le 3$ for all *x*, estimate the error involved in the approximation in part (a).
- **32.** (a) A table of values of a function g is given. Use Simpson's Rule to estimate $\int_0^{1.6} g(x) dx$.

x	g(x)	x	g(x)
0.0	12.1	1.0	12.2
0.2	11.6	1.2	12.6
0.4	11.3	1.4	13.0
0.6	11.1	1.6	13.2
0.8	11.7		

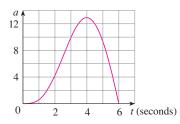
- (b) If -5 ≤ g⁽⁴⁾(x) ≤ 2 for 0 ≤ x ≤ 1.6, estimate the error involved in the approximation in part (a).
- 33. A graph of the temperature in Boston on August 11, 2013, is shown. Use Simpson's Rule with n = 12 to estimate the average temperature on that day.



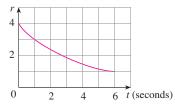
34. A radar gun was used to record the speed of a runner during the first 5 seconds of a race (see the table). Use Simpson's Rule to estimate the distance the runner covered during those 5 seconds.

<i>t</i> (s)	<i>v</i> (m/s)	<i>t</i> (s)	<i>v</i> (m/s)
0	0	3.0	10.51
0.5	4.67	3.5	10.67
1.0	7.34	4.0	10.76
1.5	8.86	4.5	10.81
2.0	9.73	5.0	10.81
2.5	10.22		

35. The graph of the acceleration a(t) of a car measured in ft/s^2 is shown. Use Simpson's Rule to estimate the increase in the velocity of the car during the 6-second time interval.



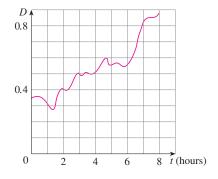
36. Water leaked from a tank at a rate of r(t) liters per hour, where the graph of r is as shown. Use Simpson's Rule to estimate the total amount of water that leaked out during the first 6 hours.



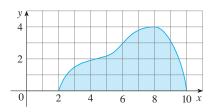
37. The table (supplied by San Diego Gas and Electric) gives the power consumption *P* in megawatts in San Diego County from midnight to 6:00 am on a day in December. Use Simpson's Rule to estimate the energy used during that time period. (Use the fact that power is the derivative of energy.)

t	Р	t	Р
0:00	1814	3:30	1611
0:30	1735	4:00	1621
1:00	1686	4:30	1666
1:30	1646	5:00	1745
2:00	1637	5:30	1886
2:30	1609	6:00	2052
3:00	1604		

38. Shown is the graph of traffic on an Internet service provider's T1 data line from midnight to 8:00 AM. *D* is the data throughput, measured in megabits per second. Use Simpson's Rule to estimate the total amount of data transmitted during that time period.



39. Use Simpson's Rule with n = 8 to estimate the volume of the solid obtained by rotating the region shown in the figure about (a) the *x*-axis and (b) the *y*-axis.



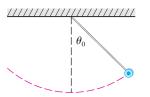
40. The table shows values of a force function f(x), where x is measured in meters and f(x) in newtons. Use Simpson's Rule to estimate the work done by the force in moving an object a distance of 18 m.

x	0	3	6	9	12	15	18
f(x)	9.8	9.1	8.5	8.0	7.7	7.5	7.4

- **41.** The region bounded by the curve $y = 1/(1 + e^{-x})$, the *x* and *y* -axes, and the line x = 10 is rotated about the *x*-axis. Use Simpson's Rule with n = 10 to estimate the volume of the resulting solid.
- **42.** The figure shows a pendulum with length *L* that makes a maximum angle θ_0 with the vertical. Using Newton's Second Law, it can be shown that the period *T* (the time for one complete swing) is given by

$$T = 4\sqrt{\frac{L}{g}} \int_0^{\pi/2} \frac{dx}{\sqrt{1 - k^2 \sin^2 x}}$$

where $k = \sin(\frac{1}{2}\theta_0)$ and g is the acceleration due to gravity. If L = 1 m and $\theta_0 = 42^\circ$, use Simpson's Rule with n = 10 to find the period.



- **43.** The intensity of light with wavelength λ traveling through a diffraction grating with *N* slits at an angle θ is given by $I(\theta) = N^2 \sin^2 k/k^2$, where $k = (\pi Nd \sin \theta)/\lambda$ and *d* is the distance between adjacent slits. A helium-neon laser with wavelength $\lambda = 632.8 \times 10^{-9}$ m is emitting a narrow band of light, given by $-10^{-6} < \theta < 10^{-6}$, through a grating with 10,000 slits spaced 10^{-4} m apart. Use the Midpoint Rule with n = 10 to estimate the total light intensity $\int_{-10^{-6}}^{10^{-6}} I(\theta) d\theta$ emerging from the grating.
- **44.** Use the Trapezoidal Rule with n = 10 to approximate $\int_{0}^{20} \cos(\pi x) dx$. Compare your result to the actual value. Can you explain the discrepancy?
- **45.** Sketch the graph of a continuous function on [0, 2] for which the Trapezoidal Rule with n = 2 is more accurate than the Midpoint Rule.

- **46.** Sketch the graph of a continuous function on [0, 2] for which the right endpoint approximation with n = 2 is more accurate than Simpson's Rule.
- **47.** If *f* is a positive function and f''(x) < 0 for $a \le x \le b$, show that

$$T_n < \int_a^b f(x) \, dx < M_n$$

- **48.** Show that if *f* is a polynomial of degree 3 or lower, then Simpson's Rule gives the exact value of $\int_{a}^{b} f(x) dx$.
- **49.** Show that $\frac{1}{2}(T_n + M_n) = T_{2n}$.
- **50.** Show that $\frac{1}{3}T_n + \frac{2}{3}M_n = S_{2n}$.

Answers

1. (a) $L_2 = 6, R_2 = 12, M_2 \approx 9.6$ (b) L_2 is an underestimate, R_2 and M_2 are overestimates. (c) $T_2 = 9 < I$ (d) $L_n < T_n < I < M_n < R_n$ **3.** (a) $T_4 \approx 0.895759$ (underestimate) (b) $M_4 \approx 0.908907$ (overestimate); $T_4 < I < M_4$ **5.** (a) $M_{10} \approx 0.806598, E_M \approx -0.001879$ (b) $S_{10} \approx 0.804779, E_s \approx -0.000060$ **7.** (a) 1.506361 (b) 1.518362 (c) 1.511519 **9.** (a) 2.660833 (b) 2.664377 (c) 2.663244 **11.** (a) 2.591334 (b) 2.681046 (c) 2.631976 (b) 4.748256 **13.** (a) 4.513618 (c) 4.675111 **15.** (a) -0.495333 (b) -0.543321 (c) -0.526123 **17.** (a) 8.363853 (b) 8.163298 (c) 8.235114 **19.** (a) $T_8 \approx 0.902333, M_8 \approx 0.905620$ (b) $|E_T| \le 0.0078, |E_M| \le 0.0039$ (c) n = 71 for $T_n, n = 50$ for M_n **21.** (a) $T_{10} \approx 1.983524, E_T \approx 0.016476;$ $M_{10} \approx 2.008248, E_M \approx -0.008248;$ $S_{10} \approx 2.000110, E_S \approx -0.000110$ (b) $|E_T| \le 0.025839$, $|E_M| \le 0.012919$, $|E_S| \le 0.000170$ (c) n = 509 for T_n , n = 360 for M_n , n = 22 for S_n **23.** (a) 2.8 (b) 7.954926518 (c) 0.2894 (d) 7.954926521 (e) The actual error is much smaller. (g) 7.953789422 (h) 0.0593 (f) 10.9 (i) The actual error is smaller. (j) $n \ge 50$ 25. T_n п L_n R_n M_n 5 0.742943 1.286599 1.014771 0.992621 10 0.867782 1.139610 1.003696 0.998152 20 0.932967 1.068881 1.000924 0.999538 E_L E_R E_T E_M п 5 0.257057 -0.286599-0.0147710.007379

-0.068881Observations are the same as after Example 1.

-0.139610

-0.003696

-0.000924

0.001848

0.000462

10

20

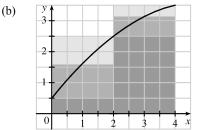
0.132218

0.067033

27. T_n п M_n S_n 6 6.695473 6.252572 6.403292 6.474023 12 6.363008 6.400206 E_T E_S п E_M -0.2954730.147428 -0.0032926 12 -0.0740230.036992 -0.000206Observations are the same as after Example 1. **29.** (a) 19 (b) 18.6 (c) $18.\overline{6}$ **31.** (a) 14.4 (b) $\frac{1}{2}$ **33.** 70.8°F **35.** 37.73 ft/s **37.** 10,177 megawatt-hours **39.** (a) 190 (b) 828 **41.** 28 **43.** 59.4 45. y, 0 0.5 1.5 1 2

1. (a)
$$\Delta x = (b-a)/n = (4-0)/2 = 2$$

 $L_2 = \sum_{i=1}^2 f(x_{i-1}) \Delta x = f(x_0) \cdot 2 + f(x_1) \cdot 2 = 2 [f(0) + f(2)] = 2(0.5 + 2.5) = 6$
 $R_2 = \sum_{i=1}^2 f(x_i) \Delta x = f(x_1) \cdot 2 + f(x_2) \cdot 2 = 2 [f(2) + f(4)] = 2(2.5 + 3.5) = 12$
 $M_2 = \sum_{i=1}^2 f(\overline{x}_i) \Delta x = f(\overline{x}_1) \cdot 2 + f(\overline{x}_2) \cdot 2 = 2 [f(1) + f(3)] \approx 2(1.6 + 3.2) = 9.6$



 L_2 is an underestimate, since the area under the small rectangles is less than the area under the curve, and R_2 is an overestimate, since the area under the large rectangles is greater than the area under the curve. It appears that M_2 is an overestimate, though it is fairly close to *I*. See the solution to Exercise 47 for a proof of the fact that if *f* is concave down on [a, b], then the Midpoint Rule is an overestimate of $\int_a^b f(x) dx$.

(c)
$$T_2 = (\frac{1}{2}\Delta x)[f(x_0) + 2f(x_1) + f(x_2)] = \frac{2}{2}[f(0) + 2f(2) + f(4)] = 0.5 + 2(2.5) + 3.5 = 9$$

This approximation is an underestimate, since the graph is concave down. Thus, $T_2 = 9 < I$. See the solution to Exercise 47 for a general proof of this conclusion.

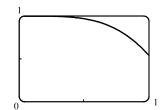
(d) For any n, we will have $L_n < T_n < I < M_n < R_n$.

3.
$$f(x) = \cos(x^2), \Delta x = \frac{1-0}{4} = \frac{1}{4}$$

(a) $T_4 = \frac{1}{4 \cdot 2} [f(0) + 2f(\frac{1}{4}) + 2f(\frac{2}{4}) + 2f(\frac{3}{4}) + f(1)] \approx 0.895759$
(b) $M_4 = \frac{1}{4} [f(\frac{1}{8}) + f(\frac{3}{8}) + f(\frac{5}{8}) + f(\frac{7}{8})] \approx 0.908907$

The graph shows that f is concave down on [0, 1]. So T_4 is an underestimate and M_4 is an overestimate. We can conclude that

 $0.895759 < \int_0^1 \cos(x^2) \, dx < 0.908907.$



5. (a)
$$f(x) = \frac{x}{1+x^2}$$
, $\Delta x = \frac{b-a}{n} = \frac{2-0}{10} = \frac{1}{5}$
 $M_{10} = \frac{1}{5} \left[f\left(\frac{1}{10}\right) + f\left(\frac{3}{10}\right) + f\left(\frac{5}{10}\right) + \dots + f\left(\frac{19}{10}\right) \right] \approx 0.806598$
(b) $S_{10} = \frac{1}{5\cdot3} \left[f(0) + 4f\left(\frac{1}{5}\right) + 2f\left(\frac{2}{5}\right) + 4f\left(\frac{3}{5}\right) + 2f\left(\frac{4}{5}\right) + \dots + 4f\left(\frac{9}{5}\right) + f(2) \right] \approx 0.804779$
Actual: $I = \int_0^2 \frac{x}{1+x^2} \, dx = \left[\frac{1}{2} \ln \left| 1 + x^2 \right| \right]_0^2 \qquad [u = 1 + x^2, \, du = 2x \, dx]$
 $= \frac{1}{2} \ln 5 - \frac{1}{2} \ln 1 = \frac{1}{2} \ln 5 \approx 0.804719$
Errors: E_M = actual - $M_{10} = I - M_{10} \approx -0.001879$

$$E_S = \text{actual} - S_{10} = I - S_{10} \approx -0.000060$$

$$\begin{array}{l} \textbf{1.} \ f(x) = \sqrt{x^3 - 1}, \Delta x = \frac{b-a}{n} = \frac{2-1}{10} = \frac{1}{10} \\ (a) \ T_{10} = \frac{1}{10\cdot 2}[f(1) + 2f(1.1) + 2f(1.2) + 2f(1.3) + 2f(1.4) + 2f(1.5) \\ & + 2f(1.6) + 2f(1.7) + 2f(1.8) + 2f(1.9) + f(2)] \\ \approx 1.506361 \\ (b) \ M_{10} = \frac{1}{10}[f(1.05) + f(1.15) + f(1.25) + f(1.35) + f(1.45) + f(1.55) + f(1.65) + f(1.75) + f(1.85) + f(1.95)] \\ \approx 1.518362 \\ (c) \ S_{10} = \frac{1}{10\cdot 3}[f(1) + 4f(1.1) + 2f(1.2) + 4f(1.3) + 2f(1.4) \\ & + 4f(1.5) + 2f(1.6) + 4f(1.7) + 2f(1.8) + 4f(1.9) + f(2)] \\ \approx 1.511519 \\ \textbf{8.} \ f(x) = \frac{e^x}{1 + x^2}, \Delta x = \frac{b-a}{n} = \frac{2-0}{10} = \frac{1}{5} \\ (a) \ T_{10} = \frac{1}{3\cdot 2}[f(0) + 2f(0.2) + 2f(0.4) + 2f(0.6) + 2f(0.8) + 2f(1) \\ & + 2f(1.2) + 2f(1.4) + 2f(1.6) + 2f(1.8) + f(2)] \\ \approx 2.66033 \\ (b) \ M_{10} = \frac{1}{3}[f(0.1) + f(0.3) + f(0.5) + f(0.7) + f(0.9) + f(1.1) + f(1.3) + f(1.5) + f(1.7) + f(1.9)] \\ \approx 2.664377 \\ (c) \ S_{10} = \frac{1}{3\cdot 3}[f(0) + 4f(0.2) + 2f(0.4) + 4f(0.6) + 2f(0.8) \\ & + 4f(1) + 2f(1.2) + 4f(1.4) + 2f(1.6) + 4f(1.8) + f(2)] \\ \approx 2.664377 \\ (c) \ S_{10} = \frac{1}{3\cdot 3}[f(0) + 4f(0.2) + 2f(0.4) + 4f(0.6) + 2f(0.8) \\ & + 4f(1) + 2f(1.2) + 4f(1.4) + 2f(1.6) + 4f(1.8) + f(2)] \\ \approx 2.663244 \\ \textbf{11.} \ f(x) = \sqrt{\ln x}, \Delta x = \frac{4-1}{6} = \frac{1}{2} \\ (a) \ T_6 = \frac{1}{2}T_2[f(1) + 2f(1.5) + 2f(2) + 2f(2.5) + 2f(3) + 2f(3.5) + f(4)] \approx 2.691334 \\ (b) \ M_6 = \frac{1}{2}[f(1.25) + f(1.75) + f(2.25) + f(2.75) + f(3.25) + f(3.75)] \approx 2.681046 \\ (c) \ S_6 = \frac{1}{2} T_3[f(1) + 4f(1.5) + 2f(2) + 4f(2.5) + 2f(3) + 2f(3.5) + f(4)] \approx 2.631976 \\ \textbf{13.} \ f(t) = e^{\sqrt{7}} \sin t, \Delta t = \frac{4-0}{8} = \frac{1}{2} \\ (a) \ T_8 = \frac{1}{2}T_2[f(0) + 2f(\frac{1}{2}) + 2f(1) + 2f(\frac{1}{2}) + 2f(2) + 2f(\frac{1}{2}) + 2f(3) + 2f(\frac{1}{2}) + 2f(4)] \approx 4.513618 \\ (b) \ M_8 = \frac{1}{2}[f(\frac{1}{2}) + f(\frac{1}{4}) + f(\frac$$

(a)
$$T_8 = \frac{1}{2 \cdot 2} \left[f(1) + 2f(\frac{3}{2}) + 2f(2) + \dots + 2f(4) + 2f(\frac{9}{2}) + f(5) \right] \approx -0.495333$$

(b) $M_8 = \frac{1}{2} \left[f(\frac{5}{4}) + f(\frac{7}{4}) + f(\frac{9}{4}) + f(\frac{11}{4}) + f(\frac{13}{4}) + f(\frac{15}{4}) + f(\frac{17}{4}) + f(\frac{19}{4}) \right] \approx -0.543321$
(c) $S_8 = \frac{1}{2 \cdot 3} \left[f(1) + 4f(\frac{3}{2}) + 2f(2) + 4f(\frac{5}{2}) + 2f(3) + 4f(\frac{7}{2}) + 2f(4) + 4f(\frac{9}{2}) + f(5) \right] \approx -0.526123$

$$\begin{aligned} & \text{17. } f(x) = e^{e^x}, \ \Delta x = \frac{1-(-1)}{10} = \frac{1}{5} \\ & \text{(a)} \ T_{10} = \frac{1}{5 \cdot 2} [f(-1) + 2f(-0.8) + 2f(-0.6) + 2f(-0.4) + 2f(-0.2) + 2f(0) \\ & + 2f(0.2) + 2f(0.4) + 2f(0.6) + 2f(-0.8) + f(1)] \\ & \approx 8.363853 \\ & \text{(b)} \ M_{10} = \frac{1}{5} [f(-0.9) + f(-0.7) + f(-0.5) + f(-0.3) + f(-0.1) + f(0.1) + f(0.3) + f(0.5) + f(0.7) + f(0.9)] \\ & \approx 8.163298 \\ & \text{(c)} \ S_{10} = \frac{1}{5 \cdot 3} [f(-1) + 4f(-0.8) + 2f(-0.6) + 4f(-0.4) + 2f(-0.2) \\ & + 4f(0) + 2f(0.2) + 4f(0.4) + 2f(0.6) + 4f(0.8) + f(1)] \\ & \approx 8.235114 \end{aligned}$$

$$\begin{aligned} & \text{19. } f(x) = \cos(x^2), \ \Delta x = \frac{1-0}{8} = \frac{1}{8} \\ & \text{(a)} \ T_8 = \frac{1}{8} \cdot 2 \{f(0) + 2[f(\frac{1}{8}) + f(\frac{2}{8}) + \dots + f(\frac{7}{8})] + f(1)\} \approx 0.902333 \\ & M_8 = \frac{1}{8} [f(\frac{1}{16}) + f(\frac{3}{16}) + f(\frac{5}{16}) + \dots + f(\frac{15}{16})] = 0.905620 \\ & \text{(b)} \ f(x) = \cos(x^2), \ f'(x) = -2x\sin(x^2), \ f''(x) = -2\sin(x^2) - 4x^2\cos(x^2). \ \text{For } 0 \le x \le 1, \ \text{sin and } \cos \text{ are positive,} \\ & \text{so } |f''(x)| = 2\sin(x^2) + 4x^2\cos(x^2) \le 2 \cdot 1 + 4 \cdot 1 \cdot 1 = 6 \ \text{since } \sin(x^2) \le 1 \ \text{and } \cos(x^2) \le 1 \ \text{for all } x, \\ & \text{and } x^2 \le 1 \ \text{for } 0 \le x \le 1. \ \text{So for } n = 8, \ \text{we take } K = 6, a = 0, \ \text{and } b = 1 \ \text{in Theorem 3, to get} \\ & |E_T| \le 6 \cdot 1^3/(12 \cdot 8^2) = \frac{1}{128} = 0.0078125 \ \text{and } |E_M| \le \frac{1}{256} = 0.00390625. \ [\text{A better estimate is obtained by noting from a graph of } f'' \ \text{that } |f''(x)| \le 4 \ \text{for } 0 \le x \le 1.] \end{aligned}$$

(c) Take K = 6 [as in part (b)] in Theorem 3. $|E_T| \le \frac{K(b-a)^3}{12n^2} \le 0.0001 \iff \frac{6(1-0)^3}{12n^2} \le 10^{-4} \iff \frac{1}{2n^2} \le \frac{1}{10^4} \iff 2n^2 \ge 10^4 \iff n^2 \ge 5000 \iff n \ge 71$. Take n = 71 for T_n . For E_M , again take K = 6 in Theorem 3 to get $|E_M| \le 10^{-4} \iff 4n^2 \ge 10^4 \iff n^2 \ge 2500 \iff n \ge 50$. Take n = 50 for M_n .

21.
$$f(x) = \sin x, \Delta x = \frac{\pi - 0}{10} = \frac{\pi}{10}$$

(a) $T_{10} = \frac{\pi}{10 \cdot 2} \left[f(0) + 2f\left(\frac{\pi}{10}\right) + 2f\left(\frac{2\pi}{10}\right) + \dots + 2f\left(\frac{9\pi}{10}\right) + f(\pi) \right] \approx 1.983524$
 $M_{10} = \frac{\pi}{10} \left[f\left(\frac{\pi}{20}\right) + f\left(\frac{3\pi}{20}\right) + f\left(\frac{5\pi}{20}\right) + \dots + f\left(\frac{19\pi}{20}\right) \right] \approx 2.008248$
 $S_{10} = \frac{\pi}{10 \cdot 3} \left[f(0) + 4f\left(\frac{\pi}{10}\right) + 2f\left(\frac{2\pi}{10}\right) + 4f\left(\frac{3\pi}{10}\right) + \dots + 4f\left(\frac{9\pi}{10}\right) + f(\pi) \right] \approx 2.000110$
Since $I = \int_0^{\pi} \sin x \, dx = \left[-\cos x \right]_0^{\pi} = 1 - (-1) = 2, E_T = I - T_{10} \approx 0.016476, E_M = I - M_{10} \approx -0.008248$,
and $E_S = I - S_{10} \approx -0.000110$.

(b)
$$f(x) = \sin x \implies \left| f^{(n)}(x) \right| \le 1$$
, so take $K = 1$ for all error estimates.

$$|E_T| \le \frac{K(b-a)^3}{12n^2} = \frac{1(\pi-0)^3}{12(10)^2} = \frac{\pi^3}{1200} \approx 0.025839. \quad |E_M| \le \frac{|E_T|}{2} = \frac{\pi^3}{2400} \approx 0.012919.$$
$$|E_S| \le \frac{K(b-a)^5}{180n^4} = \frac{1(\pi-0)^5}{180(10)^4} = \frac{\pi^5}{1,800,000} \approx 0.000170.$$

The actual error is about 64% of the error estimate in all three cases.

(c)
$$|E_T| \le 0.00001 \iff \frac{\pi^3}{12n^2} \le \frac{1}{10^5} \iff n^2 \ge \frac{10^5 \pi^3}{12} \implies n \ge 508.3$$
. Take $n = 509$ for T_n
 $|E_M| \le 0.00001 \iff \frac{\pi^3}{24n^2} \le \frac{1}{10^5} \iff n^2 \ge \frac{10^5 \pi^3}{24} \implies n \ge 359.4$. Take $n = 360$ for M_n
 $|E_S| \le 0.00001 \iff \frac{\pi^5}{180n^4} \le \frac{1}{10^5} \iff n^4 \ge \frac{10^5 \pi^5}{180} \implies n \ge 20.3$.

Take n = 22 for S_n (since n must be even).

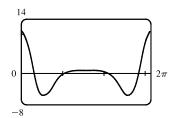
- 23. (a) Using a CAS, we differentiate f(x) = e^{cos x} twice, and find that f''(x) = e^{cos x}(sin² x cos x). From the graph, we see that the maximum value of |f''(x)| occurs at the endpoints of the interval [0, 2π]. Since f''(0) = -e, we can use K = e or K = 2.8.
 - (b) A CAS gives $M_{10} \approx 7.954926518$. (In Maple, use Student[Calculus1] [RiemannSum] or Student[Calculus1] [ApproximateInt].)
 - (c) Using Theorem 3 for the Midpoint Rule, with K = e, we get $|E_M| \le \frac{e(2\pi 0)^3}{24 \cdot 10^2} \approx 0.280945995$.

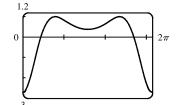
With
$$K = 2.8$$
, we get $|E_M| \le \frac{2.8(2\pi - 0)^3}{24 \cdot 10^2} = 0.289391916.$

- (d) A CAS gives $I \approx 7.954926521$.
- (e) The actual error is only about 3×10^{-9} , much less than the estimate in part (c).
- (f) We use the CAS to differentiate twice more, and then graph $f^{(4)}(x) = e^{\cos x} (\sin^4 x - 6\sin^2 x \cos x + 3 - 7\sin^2 x + \cos x).$ From the graph, we see that the maximum value of $|f^{(4)}(x)|$ occurs at the

endpoints of the interval $[0, 2\pi]$. Since $f^{(4)}(0) = 4e$, we can use K = 4e or K = 10.9.

- (g) A CAS gives $S_{10} \approx 7.953789422$. (In Maple, use Student[Calculus1] [ApproximateInt].)
- (h) Using Theorem 4 with K = 4e, we get $|E_S| \le \frac{4e(2\pi 0)^5}{180 \cdot 10^4} \approx 0.059153618$. With K = 10.9, we get $|E_S| \le \frac{10.9(2\pi - 0)^5}{180 \cdot 10^4} \approx 0.059299814$.
- (i) The actual error is about $7.954926521 7.953789422 \approx 0.00114$. This is quite a bit smaller than the estimate in part (h), though the difference is not nearly as great as it was in the case of the Midpoint Rule.
- (j) To ensure that $|E_S| \leq 0.0001$, we use Theorem 4: $|E_S| \leq \frac{4e(2\pi)^5}{180 \cdot n^4} \leq 0.0001 \Rightarrow \frac{4e(2\pi)^5}{180 \cdot 0.0001} \leq n^4 \Rightarrow n^4 \geq 5,915,362 \iff n \geq 49.3$. So we must take $n \geq 50$ to ensure that $|I S_n| \leq 0.0001$. (K = 10.9 leads to the same value of n.)





25.
$$I = \int_{0}^{1} xe^{x} dx = [(x - 1)e^{x}]_{0}^{1}$$
 [by parts] $= 0 - (-1) = 1, f(x) = xe^{x}, \Delta x = 1/n$
 $n = 5$: $L_{5} = \frac{1}{5}[f(0) + f(0.2) + f(0.4) + f(0.6) + f(0.8)] \approx 0.742943$
 $R_{5} = \frac{1}{5}[f(0.2) + f(0.4) + f(0.6) + f(0.8) + f(1)] \approx 1.286599$
 $T_{5} = \frac{1}{5 - 2}[f(0) + 2f(0.2) + 2f(0.4) + 2f(0.6) + 2f(0.8) + f(1)] \approx 1.014771$
 $M_{5} = \frac{1}{5}[f(0.1) + f(0.3) + f(0.5) + f(0.7) + f(0.9)] \approx 0.992621$
 $E_{L} = I - L_{5} \approx 1 - 0.742943 = 0.257057$
 $E_{R} \approx 1 - 1.286599 = -0.286599$
 $E_{T} \approx 1 - 1.014771 = -0.014771$
 $E_{M} \approx 1 - 0.992621 = 0.007379$
 $n = 10$: $L_{10} = \frac{1}{10}[f(0) + f(0.1) + f(0.2) + \dots + f(0.9)] \approx 0.867782$
 $R_{10} = \frac{1}{10}[f(0.1) + f(0.2) + \dots + f(0.9) + f(1)] \approx 1.03696$
 $M_{10} = \frac{1}{10}[f(0.05) + f(0.15) + \dots + f(0.85) + f(0.95)] \approx 0.998152$
 $E_{L} = I - L_{10} \approx 1 - 0.867782 = 0.132218$
 $E_{R} \approx 1 - 1.139610 = -0.139610$
 $E_{T} \approx 1 - 1.003696 = -0.003696$
 $E_{M} \approx 1 - 0.998152 = 0.001848$
 $n = 20$: $L_{20} = \frac{1}{20}[f(0) + f(0.05) + f(0.10) + \dots + f(0.95)] \approx 0.932967$
 $R_{20} = \frac{1}{20}[f(0.05) + f(0.10) + \dots + f(0.95) + f(1)] \approx 1.006881$
 $T_{20} = \frac{1}{20}[f(0.05) + f(0.10) + \dots + f(0.95) + f(1)] \approx 1.000924$
 $M_{20} = \frac{1}{20}[f(0.025) + f(0.075) + f(0.125) + \dots + f(0.975)] \approx 0.999538$
 $E_{L} = I - L_{20} \approx 1 - 0.932967 = 0.067033$
 $E_{R} \approx 1 - 1.0068881 = -0.068881$
 $E_{T} \approx 1 - 1.0068881 = -0.068881$
 $E_{T} \approx 1 - 1.00924 = -0.000924$
 $E_{M} \approx 1 - 0.999538 = 0.000462$

n	L_n	R_n	T_n	M_n
5	0.742943	1.286599	1.014771	0.992621
10	0.867782	1.139610	1.003696	0.998152
20	0.932967	1.068881	1.000924	0.999538

n	E_L	E_R	E_T	E_M
5	0.257057	-0.286599	-0.014771	0.007379
10	0.132218	-0.139610	-0.003696	0.001848
20	0.067033	-0.068881	-0.000924	0.000462

Observations:

1. E_L and E_R are always opposite in sign, as are E_T and E_M .

2. As n is doubled, E_L and E_R are decreased by about a factor of 2, and E_T and E_M are decreased by a factor of about 4.

3. The Midpoint approximation is about twice as accurate as the Trapezoidal approximation.

4. All the approximations become more accurate as the value of n increases.

5. The Midpoint and Trapezoidal approximations are much more accurate than the endpoint approximations.

$$\begin{aligned} \mathbf{27.} \ I &= \int_0^2 x^4 \, dx = \left[\frac{1}{5} x^5\right]_0^2 = \frac{32}{5} - 0 = 6.4, \ f(x) = x^4, \ \Delta x = \frac{2-0}{n} = \frac{2}{n} \\ n &= 6: \quad T_6 = \frac{2}{6 \cdot 2} \left\{ f(0) + 2\left[f\left(\frac{1}{3}\right) + f\left(\frac{2}{3}\right) + f\left(\frac{3}{3}\right) + f\left(\frac{4}{3}\right) + f\left(\frac{5}{3}\right)\right] + f(2) \right\} \approx 6.695473 \\ M_6 &= \frac{2}{6} \left[f\left(\frac{1}{6}\right) + f\left(\frac{3}{6}\right) + f\left(\frac{5}{6}\right) + f\left(\frac{7}{6}\right) + f\left(\frac{9}{6}\right) + f\left(\frac{11}{6}\right)\right] \approx 6.252572 \\ S_6 &= \frac{2}{6 \cdot 3} \left[f(0) + 4f\left(\frac{1}{3}\right) + 2f\left(\frac{2}{3}\right) + 4f\left(\frac{3}{3}\right) + 2f\left(\frac{4}{3}\right) + 4f\left(\frac{5}{3}\right) + f(2)\right] \approx 6.403292 \\ E_T &= I - T_6 \approx 6.4 - 6.695473 = -0.295473 \\ E_M \approx 6.4 - 6.252572 = 0.147428 \\ E_S &\approx 6.4 - 6.403292 = -0.003292 \\ n &= 12: \quad T_{12} &= \frac{2}{12 \cdot 2} \left\{f(0) + 2\left[f\left(\frac{1}{6}\right) + f\left(\frac{2}{6}\right) + f\left(\frac{3}{6}\right) + \dots + f\left(\frac{11}{6}\right)\right] + f(2)\right\} \approx 6.474023 \\ M_6 &= \frac{2}{12} \left[f\left(\frac{1}{12}\right) + f\left(\frac{3}{12}\right) + f\left(\frac{5}{12}\right) + \dots + f\left(\frac{23}{12}\right)\right] \approx 6.363008 \\ S_6 &= \frac{2}{12 \cdot 3} \left[f(0) + 4f\left(\frac{1}{6}\right) + 2f\left(\frac{2}{6}\right) + 4f\left(\frac{3}{6}\right) + 2f\left(\frac{4}{6}\right) + \dots + 4f\left(\frac{11}{6}\right) + f(2)\right] \approx 6.400206 \\ E_T &= I - T_{12} \approx 6.4 - 6.474023 = -0.074023 \\ E_M \approx 6.4 - 6.363008 = 0.036992 \\ E_S &\approx 6.4 - 6.400206 = -0.000206 \end{aligned}$$

n	T_n	M_n	S_n	n	E_T	E_M	E_S
6	6.695473	6.252572	6.403292	6	-0.295473	0.147428	-0.0032
12	6.474023	6.363008	6.400206	12	-0.074023	0.036992	-0.0002

Observations:

29. $\Delta x = (b-a)/n = (6-0)/6 = 1$

- 1. E_T and E_M are opposite in sign and decrease by a factor of about 4 as n is doubled.
- 2. The Simpson's approximation is much more accurate than the Midpoint and Trapezoidal approximations, and E_S seems to decrease by a factor of about 16 as n is doubled.

(a)
$$T_6 = \frac{\Delta x}{2} [f(0) + 2f(1) + 2f(2) + 2f(3) + 2f(4) + 2f(5) + f(6)]$$

 $\approx \frac{1}{2} [3 + 2(5) + 2(4) + 2(2) + 2(2.8) + 2(4) + 1]$
 $= \frac{1}{2} (39.6) = 19.8$
(b) $M_6 = \Delta x [f(0.5) + f(1.5) + f(2.5) + f(3.5) + f(4.5) + f(5.5)]$
 $\approx 1 [4.5 + 4.7 + 2.6 + 2.2 + 3.4 + 3.2]$
 $= 20.6$
(c) $S_6 = \frac{\Delta x}{3} [f(0) + 4f(1) + 2f(2) + 4f(3) + 2f(4) + 4f(5) + f(6)]$
 $\approx \frac{1}{3} [3 + 4(5) + 2(4) + 4(2) + 2(2.8) + 4(4) + 1]$
 $= \frac{1}{3} (61.6) = 20.5\overline{3}$

31. (a) $\int_{1}^{5} f(x) dx \approx M_4 = \frac{5-1}{4} [f(1.5) + f(2.5) + f(3.5) + f(4.5)] = 1(2.9 + 3.6 + 4.0 + 3.9) = 14.4$

(b)
$$-2 \le f''(x) \le 3 \implies |f''(x)| \le 3 \implies K = 3$$
, since $|f''(x)| \le K$. The error estimate for the Midpoint Rule is
 $|E_M| \le \frac{K(b-a)^3}{24n^2} = \frac{3(5-1)^3}{24(4)^2} = \frac{1}{2}.$

33.
$$T_{\text{ave}} = \frac{1}{24-0} \int_0^{24} T(t) dt \approx \frac{1}{24} S_{12} = \frac{1}{24} \frac{24-0}{3(12)} [T(0) + 4T(2) + 2T(4) + 4T(6) + 2T(8) + 4T(10) + 2T(12) + 4T(14) + 2T(16) + 4T(18) + 2T(20) + 4T(22) + T(24)]$$

 $\approx \frac{1}{36} [67 + 4(65) + 2(62) + 4(58) + 2(56) + 4(61) + 2(63) + 4(68) + 2(71) + 4(69) + 2(67) + 4(66) + 64]$
 $= \frac{1}{36} (2317) = 64.36\overline{1}^{\circ} \text{F}.$

The average temperature was about 64.4°F.

35. By the Net Change Theorem, the increase in velocity is equal to $\int_0^6 a(t) dt$. We use Simpson's Rule with n = 6 and $\Delta t = (6 - 0)/6 = 1$ to estimate this integral:

$$\int_0^6 a(t) dt \approx S_6 = \frac{1}{3} [a(0) + 4a(1) + 2a(2) + 4a(3) + 2a(4) + 4a(5) + a(6)]$$
$$\approx \frac{1}{3} [0 + 4(0.5) + 2(4.1) + 4(9.8) + 2(12.9) + 4(9.5) + 0] = \frac{1}{3} (113.2) = 37.7\overline{3} \text{ ft/s}$$

37. By the Net Change Theorem, the energy used is equal to $\int_0^6 P(t) dt$. We use Simpson's Rule with n = 12 and

$$\Delta t = \frac{6-0}{12} = \frac{1}{2}$$
 to estimate this integral:

$$\int_{0}^{6} P(t) dt \approx S_{12} = \frac{1/2}{3} [P(0) + 4P(0.5) + 2P(1) + 4P(1.5) + 2P(2) + 4P(2.5) + 2P(3) + 4P(3.5) + 2P(4) + 4P(4.5) + 2P(5) + 4P(5.5) + P(6)] = \frac{1}{6} [1814 + 4(1735) + 2(1686) + 4(1646) + 2(1637) + 4(1609) + 2(1604) + 4(1611) + 2(1621) + 4(1666) + 2(1745) + 4(1886) + 2052]$$

 $=\frac{1}{6}(61,064)=10,177.\overline{3}$ megawatt-hours

39. (a) Let y = f(x) denote the curve. Using disks, $V = \int_2^{10} \pi [f(x)]^2 dx = \pi \int_2^{10} g(x) dx = \pi I_1$.

Now use Simpson's Rule to approximate I_1 :

$$I_1 \approx S_8 = \frac{10-2}{3(8)} [g(2) + 4g(3) + 2g(4) + 4g(5) + 2g(6) + 4g(7) + g(8)]$$

$$\approx \frac{1}{3} [0^2 + 4(1.5)^2 + 2(1.9)^2 + 4(2.2)^2 + 2(3.0)^2 + 4(3.8)^2 + 2(4.0)^2 + 4(3.1)^2 + 0^2]$$

$$= \frac{1}{3} (181.78)$$

Thus, $V \approx \pi \cdot \frac{1}{3}(181.78) \approx 190.4$ or 190 cubic units.

(b) Using cylindrical shells, $V = \int_{2}^{10} 2\pi x f(x) \, dx = 2\pi \int_{2}^{10} x f(x) \, dx = 2\pi I_1.$

Now use Simpson's Rule to approximate I_1 :

$$I_1 \approx S_8 = \frac{10 - 2}{3(8)} [2f(2) + 4 \cdot 3f(3) + 2 \cdot 4f(4) + 4 \cdot 5f(5) + 2 \cdot 6f(6) + 4 \cdot 7f(7) + 2 \cdot 8f(8) + 4 \cdot 9f(9) + 10f(10)] \approx \frac{1}{3} [2(0) + 12(1.5) + 8(1.9) + 20(2.2) + 12(3.0) + 28(3.8) + 16(4.0) + 36(3.1) + 10(0)] = \frac{1}{3} (395.2)$$

Thus, $V \approx \pi \cdot \frac{1}{3}(181.78) \approx 190.4$ or 190 cubic units.

41. Using disks, $V = \int_{1}^{5} \pi (e^{-1/x})^2 dx = \pi \int_{1}^{5} e^{-2/x} dx = \pi I_1$. Now use Simpson's Rule with $f(x) = e^{-2/x}$ to approximate I_1 . $I_1 \approx S_8 = \frac{5-1}{3(8)} [f(1) + 4f(1.5) + 2f(2) + 4f(2.5) + 2f(3) + 4f(3.5) + 2f(4) + 4f(4.5) + f(5)] \approx \frac{1}{6} (11.4566)$ Thus, $V \approx \pi \cdot \frac{1}{6} (11.4566) \approx 6.0$ cubic units.

43.
$$I(\theta) = \frac{N^2 \sin^2 k}{k^2}$$
, where $k = \frac{\pi N d \sin \theta}{\lambda}$, $N = 10,000, d = 10^{-4}$, and $\lambda = 632.8 \times 10^{-9}$. So $I(\theta) = \frac{(10^4)^2 \sin^2 k}{k^2}$, where $k = \frac{\pi (10^4)(10^{-4}) \sin \theta}{632.8 \times 10^{-9}}$. Now $n = 10$ and $\Delta \theta = \frac{10^{-6} - (-10^{-6})}{10} = 2 \times 10^{-7}$, so $M_{10} = 2 \times 10^{-7} [I(-0.0000009) + I(-0.000007) + \dots + I(0.000009)] \approx 59.4$.

- **45.** Consider the function f whose graph is shown. The area $\int_0^2 f(x) dx$ is close to 2. The Trapezoidal Rule gives $T_2 = \frac{2-0}{2\cdot 2} [f(0) + 2f(1) + f(2)] = \frac{1}{2} [1 + 2 \cdot 1 + 1] = 2.$ The Midpoint Rule gives $M_2 = \frac{2-0}{2} [f(0.5) + f(1.5)] = 1[0+0] = 0$, so the Trapezoidal Rule is more accurate.
- 47. Since the Trapezoidal and Midpoint approximations on the interval [a, b] are the sums of the Trapezoidal and Midpoint approximations on the subintervals [x_{i-1}, x_i], i = 1, 2, ..., n, we can focus our attention on one such interval. The condition f''(x) < 0 for a ≤ x ≤ b means that the graph of f is concave down as in Figure 5. In that figure, T_n is the area of the trapezoid AQRD, ∫_a^b f(x) dx is the area of the region AQPRD, and M_n is the area of the trapezoid ABCD, so T_n < ∫_a^b f(x) dx < M_n. In general, the condition f'' < 0 implies that the graph of f on [a, b] lies above the chord joining the points (a, f(a)) and (b, f(b)). Thus, ∫_a^b f(x) dx > T_n. Since M_n is the area under a tangent to the graph, and since f'' < 0 implies that the tangent lies above the graph, we also have M_n > ∫_a^b f(x) dx. Thus, T_n < ∫_a^b f(x) dx < M_n.

$$\begin{aligned} \mathbf{49.} \ T_n &= \frac{1}{2} \,\Delta x \left[f(x_0) + 2f(x_1) + \dots + 2f(x_{n-1}) + f(x_n) \right] \text{ and} \\ M_n &= \Delta x \left[f(\overline{x}_1) + f(\overline{x}_2) + \dots + f(\overline{x}_{n-1}) + f(\overline{x}_n) \right], \text{ where } \overline{x}_i = \frac{1}{2} (x_{i-1} + x_i). \text{ Now} \\ T_{2n} &= \frac{1}{2} \left(\frac{1}{2} \Delta x \right) \left[f(x_0) + 2f(\overline{x}_1) + 2f(x_1) + 2f(\overline{x}_2) + 2f(x_2) + \dots + 2f(\overline{x}_{n-1}) + 2f(x_{n-1}) + 2f(\overline{x}_n) + f(x_n) \right] \text{ so} \\ \frac{1}{2} (T_n + M_n) &= \frac{1}{2} T_n + \frac{1}{2} M_n \\ &= \frac{1}{4} \Delta x \left[f(x_0) + 2f(x_1) + \dots + 2f(x_{n-1}) + f(x_n) \right] + \frac{1}{4} \Delta x \left[2f(\overline{x}_1) + 2f(\overline{x}_2) + \dots + 2f(\overline{x}_{n-1}) + 2f(\overline{x}_n) \right] \\ &= T_{2n} \end{aligned}$$